
AD-A127 689 A BIBLIOGRAPHY OF SOFTWARE ENGINEERING TERMS(U) DATA I/f
AND ANALYSIS CENTER FOR SOFTWARE GRIFFISS AF8 NY

GLOSS-SOLER OCT 79 DACS-GLOS-1 F306D2 7R-C-0255

UNCLASSI F IED FIG 5/2 N

EEEEEEn 00i0,EE
mhhhhEEEEEEEEE
mhshhE.EEEE...

III; 1.0 1 j2.5

I-
m

MICROCOPY RESOLUITION TILSI CHART

hL H

Hi 2 11114"11
11111 - I'l'-.

MICRCOP RESLUTON T~i HAR

~ GLOS-1

THE DACS GLOSSARY

A Bilioraph ofSoftware Engineering Terms

October 1979

..

C-,

This docurancut 2. t,: ipp-w~ed
for publ;i Is c 'r ;j i. .

ditW

The information and data contained herein have been compiled from
government and nongovernment technical reports and are intended
to be used for reference purposes. Neither the United States Govern-
ment nor lIT Research Institute warrant the accuracy of this informa-
tion and data. The user is further cautioned that the data contained
herein may not be used in lieu of other contractually cited references
and specifications.

Publication of this information is not an expression of the opinion of
The United States Government or of lIT Research Institute as to the
quality or durability of any product mentioned herein and any use
for advertising or promotional purposes of this information in con-
junction with the name of The United States Government or lIT
Research Institute without written permission is expressly prohibited.

&ME

DACS o,
DACS Data & Analysis Center for Software

AN INFORMATION ANALYSIS CENTER

THE DACS GLOSSARY

A Bibliography of Software Engineering Terms

COMPILED FROM THE LITERATURE

BY:

SHIRLEY A. GLOSS-SOLER
lIT RESEARCH INSTITUTE

UNDER CONTRACT TO:

ROME AIR DEVELOPMENT CENTER
GRIFFISS AIR FORCE BASE

OCTOBER 1979

ORDERING NUMBER GLOS-1

["I

-1d
° I' _ . - . [

' - - -

DACS The Data& Analysts Center for Software is an

Information Analysis Center, operated by lIT Research Institute

under contract to the Rome Air Development Center, AFSC.
mll||.ul||u~h.Ihh|mlhu~hml|u|h~umhh|||hlmhhuumhhh,,hhhumhlhhhulmhlu

The Data and Analysis Center for Software (DACS) is an information analysis
center sponsored by the Air Force Systems Command, Rome Air Development Center
(RADC), and operated by lIT Research Institute (IITRI). DACS serves as a central
source for current, readily usable data and information concerning software tech-
nology.

The major functions of the DACS are to develop and maintain a computer data-
base of empirical data collected on the development and maintenance of computer
software; produce and distribute subsets of the database; maintain a software tech-
nology information base of technical documents, project status information, and
evaluation data; analyze the data and information and produce technical reports;
maintain a current awareness program which includes dissemination of technical
information (analysis reports, technical monographs, etc.), assessments of tech-
nological developments, and publication of a quarterly newsletter: develop and
maintain a glossary of software engineering terms; and provide rapid response to
inquiries for technical information and assistance.

To obtain more information on the products and services of the DACS, contact:

Lorraine Duvall
Data and Analysis Center for Software
RADC/ISISI
Griffiss Air Force Base, NY 13441

Telephone: 315/336-0937
Autovon: 587-3395

S

I $

SECURITY CL.ASSIFICATION OF THIS PAGE (Whn De. Entered) READ____ INSTRUCTIONS_______

REOTePG BEFORE COMPLETING FORM
I. -REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

GLOS-1 ADb-4? 7 6 o
4. TITLE (and Subtitle). 5. TYPE OF REPORT & PERIOD COVERED

THE ACSGLOSARYInterim Report
A Blbliaqraphy of Software Engineering Terms Sp.7 u.7

7. AUTNOR(a) O RN UBRs

Shirley A. Gloss-Soler F00-8C05

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA a WORK UNIT NUMBERS

Data & Analysis Center for Software
RADC/ISISI
GriffissAFB,_NY_13441 ______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COEE) Octnhter 1979
Griffiss AFB, NY 13441 I3. NUMBER OF PAGES

147
14. MONITORING AGENCY NAME & ADDRESS(if different fro. Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSI FIED
Same IS.DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

____ ___ ____ ___ ___ ____ ___ ___ ____ ___ ___N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the absiract entered in Block 20. if different fromt Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: John Palaimo (COEE)

A-VII -Jon TI.X.l I . -r. - -. c.
I9. KEY WORDS (Continue on rererse side If necessary and identify by block number)

Software Engineering Terminology
Software Technology
Computer Software
Software Engineering

20. ABSTRACT (Continue on roerre side If necesary and identify by block number)

,The DACS Glossary contains over 1100 terms and their definitions compiled
from the software engineering literature. Sources for definitions are
cited and ordering information for source documents is supplied.

DD I AN7 1473
,f '(SECURITY CLASSIFICATION OF THIS PAGE (*%en Date Entered)

PREFACE

The purpose of this document is to record, as accurately as is possible
in a still-evolving discipline, the terminology currently being used in the
field of software engineering. We hope that the DACS GLOSSARY will help to
improve communication within the software engineering community and will also
provide an impetus toward the sorely needed standardization of terminology.

This software engineering glossary is one of the products of the Data and
Analysis Center for Software (DACS). The DACS will continue to update this
glossary to reflect current term usage. Suggestions, comments, and critiques
are welcome.

(

i iii

p01
g ooe,

Il,

THE DACS GLOSSARY

A BIBLIOGRAPHY OF SOFTWARE ENGINEERING TERMS

Table of Contents

Page

I. INTRODUCTION

1.1 Contents vii
1.2 Objectives ix

II. TERMS AND DEFINITIONS 1

III. SOURCES

3.1 Bibliography of Sources 133
3.2 Ordering Information for Sources 147

SECTION I

INTRODUCTION

1.1 Contents

This document contains definitions of terns from the software engineering
literature and consists of three sections. This first section provides
introductory information for the users of the glossary. The second section
contains the terms, their definitions, and a reference to the source which
supplied the definition. Of the 1123 terms included, 1100 have one or more
definitions and 23 are cross references to other terms. Much of the
terminology currently in use is not used consistently and, often, no generally
perferred definition has yet emerged; for these terms we have included
alternate definitions. In these cases, the first (not necessarily
authoritative) definition is followed by its reference in parentheses, and the
reference is followed by a numeral in parentheses, then by the alternate
definition itself. The same notational method is used for successive alternate
definitions. The third section lists the 171 sources referenced. The third
section also provides ordering information for the source documents.

Terms and definitions have been obtained from many sources; from software
engineering literature, from lists contributed by various individuals, and
from published dictionaries of data processing terminology. These sources have
been credited by several codes which are identified on the pages itmmediately
following the listing of terms. Several definitions are a synthesis of more
than one definition and cannot be credited to a single source.

Two sources require special mention. Those terms credited to ANSI-X3 are
taken from the American National Dictionary for Information Processin(J.
Complete copyright and purchase information for the dictionary is supplied in
the list of sources. Those terms credited to ANSI-X3H1 were compiled by the
Standing Committee on Operating System Command Languages of the American
National Standards Institute.

vii Vill

1.2 Objectives

There were two objectives in compiling this software engineering
glossary. The first, as stated in the preface, is to record the terminology
currently in use. The second objective is to provide users of the DACS
software engineering bibliographic services [1] a means of ensuring that they
are using terms from the DACS THESAURUS (a specialized thesaurus for indexing
and retrieving software engineering literature) for their retrievals in the
same way as the terms were used for indexing. A closely related objective is
to promote consistency in indexing new documents for the bibliographic
collection.

Certain terms are contained in this glossary which are not specific to
computer software--or even to hardware--but which describe concepts of
interest to users of the bibliographic information database (e.g., Submarine
Applications). These terms are identified as "Indexing Terms" and are not
defined; instead a description is given of the type of information a document
retrieved using that term would contain.

A draft version of this glossary has already been used by the Software
Engineering Terminology Task Group [2] as a base from which candidate terms
were selected for a working draft of the second version of their Software
Engineerinc Terminology. The results of their efforts will help us to make an
improved version of the DACS Glossary for later publication. We welcome the
opportunity to participate in such reciprocal efforts.

[i] More information is contained in the DACS publication "Bibliographic
Services - Custom Searches", order no. BIB-i. BIB-I also contains the [ACS
Thesaurus.
[2] IEEE Computer Society, Technical Committee on Software Engineering,
Subcommittee on Software Engineering Standards, Terminology Task Group.

ix

io

SECTION II

TERMS AND DEFINITIONS

.1.

ABSOLUTE MACHINE CODE
MACHINE LANGUAGE CODE IN WHICH AECRESSLS ARE SPECIfIED IN IEkMS OF ACTUAL
MACHINE LOCATIONS. (NASA)

ABSTRACT MACHINES
FICTITIOUS COMPUTERS USED TG IMPLEENT PORTABLE OPERATING SYSTEMS. (DAN 284)
(2) A LOGICAL ENTITY COMPOSED OF: 1) SPECIFIC, FIXED DATA OBJECTS; 2) A
FIXED COLLECTION OF DATA OBJECT CLASSES CALLED DATA TYPES; 3) A FIXED
COLLECTION OF OPERATIONS; AND, OPTIONALLY, 4) AN ONGOING MACHINE CYCLE. THE
CAPABILITIES AND CHARACTERISTICS OF AN ABSTRACT MACHINE MAY BE FULLY
DESCRIBED IN TERMS OF THE DATA OBJECTS, DATA TYPES, AND OPEPATIONS AND
MACHINE CYCLE WHICH MAKE UP THE MACHINE. (ABBOTT) (3) A REPRESENTATION OF
THE CHARACTERISTICS OF A MACHINE AS SEEN BY A USER OR PROGRAM. (ANSI-X3HQ)

ABSTRACT RESOURCE
ANY COMMODITY OR AVAILABLE MEANS THAT MAY BE ALLOCATED TOWARD THE
ACCOMPLISHMENT OF A TASK, CHARACTERIZABLE BY ABSTRACTICNS IN REPRESENTATION,
MANIPULATIONS, AND AXIOMATIZATION. (DAN 1153)

ABSTRACTION
A MECHANISM FOR HIERARCHIC, STEPWISE REFINEMENT OF DETAIL BY WHICH IT IS
POSSIBLE AT EACH STAGE OF DEVELOPMENT TO EXPRESS ONLY RELEVANT DETAILS AND
TO DEFER (AND, INDEED, HIDE) NON-RELEVANT DETAILS FUR LATER REFINEMENT. (DAN
1153)

ACCEPTANCE CRITERIA
CRITERIA THAT A SET OF SOFTWARE MUST SATISFY IN CONFORMANCE WITH DELIVERY
REQUIREMENTS. SOFTWARE DELIVERED FOR INTERIM OPERATIONS WITH DISCREPANT
ITEMS IS SAID TO BE ACCEPTED WITH "LIENS". (DAN 1153)

ACCEPTANCE TESTING
TESTING TO VERIFY ACCEPTANCE CRITERIA FOR PROGRAM CERTIFICATION. (DAN 1153)
(2) THIS IS A SELF-DEFINING TERM UTILIZED IN SOFTWARE AND/OR HARDWARE
PRODUCING CONTRACTS. THE PRODUCT'S PASS/FAIL CRITERIA ARE PREDETERMINED.
FAILURE TO MEET THE STANDARD OF THE CRITERIA CAUSES REJECTION OF THE
PRODUCT.

ACCESSIBILITY
CODE POSSESSES THE CHARACTERISTIC ACCESSIBILITY TO THE EXTENT THAT IT
FACILITATES SELECTIVE USE OF ITS PARTS. (ACCESSIBILITY IS NECESSARY FOR
EFFICIENCY, TESTABILITY, AND HUMAN ENGINEERING) (DAN 239) EASE OF ACCESS TO
A SYSTEM. ACCESSIBILITY IS A REFLECTION OF THE PROBABILITY OF INTENTIONAL
AND ACCIDENTAL BREAKING INTO A SYSTEM. ACCESSIBILITY IS NEARLY SYNONOMOUS
WITH SECURITY. (DAN 781)

ACCESS-CONTROL MECHANISMS
ACCESS CONTROL MECHANISMS ARE MECHANISMS CAPABLE OF ENFORCING RULES ABOUT
WHO CAN PERFORM WHAT OPERATIONS OR WHO CAN ACCESS AN OBJECT CONTAINING
CERTAIN INFORMATION. (DAN 616)

ACCREDITATION
ALL ACTIVITIES THAT, TAKEN TOGETHER, ESTABLISH A SUFFICIENT LEVEL OF
CONFIDENCE IN THE FINAL PRODUCT THAT THE DEVELOPER IS ABLE TO GUARANTEE ITS
FUNCTIONAL PERFORMANCE TO SPECIFICATIONS AND TO PROVIDE A WARRANTY TO THE

1

CUSTOER WITH MINIMUM RISK CF ADDITIONAL SUPPORT AT THE DEVELOPER'S EXPENSE.
(DAN-LD7) (2) ACCREDITATION IS THE POCESS WHEPEBY ACCURACY TO A PREDEFINLD
STANDARD IS ASCERTAINED AND DEtMONSTRATED FOP A SOFTWARE PRODUCT...
ACCREDITATION AS A TERN IN SOFTWARE ENGINLEf ING HAS COME TO BE USED GNLY
RECENTLY, PRIMARILY It. THE ED COMMUNITY TO DESCRIBE AN AUTHORITATIVE
ENDORSEMENT OF A SOFTWARE PRODUCT. IT HAS BEEN USED SYNONYMOUSLY WITH TE
TERM CERTIFICATION IN THE DOD CC MMUNI TY. ACCREDITATION REQUIRES USER
EXPERIENCE TO EVALUATE THE RELIABILITY OF THE PRODUCT. RCCEDURES FOP
DIRECTLY EXAMINING THE SOFTWARE ARE ALSO REQUIRED BEFORE THE ACCREDITATIO N
CAN BE MADE FOR THE PRODUCT It QUESTION. (SET)

ACCURACY
A MEASURE OF THE DECREE OF FREEDOM FROM ERROR; THE ELGREE OF EXACTNESS
POSSESSED BY AN APPROXIMATION OR MEASUREMEN:T. IN THIS CONTEXT ACCURACY IS /
MEASURE OF "DESIGN ADEQUACY" RATHER THAN "SYSTEM RELIABILITY". ERRORS KHICP
INFLUENCE THIS MEASURE ARE DUE TO ThE DATA AND THE LOGIC FOR PROCESSING THAT
DATA. ADDITIONAL ERROR DUE TO HARDWARE FAILURE OR LOGIC "BUGS" IS HANDLED
AND MEASURED SEPARATELY UNDER RELIABILITY CONCEPTS. (DAN 781)

ACCURACY STUDY PROCESSOR
A COMPUTER PROGRAM USED TO PERFORM CALCULATIONS TO ASSIST IN DETERMINItG IF
PROGRAM VARIABLES ARE COMPUTED WITH REQUIRED ACCURACY. (DAN 134)

ACQUISITION
THE PROCESS OF ACQUIRING SOFTWARE SYSTEMS AND/CR COMPONENTS. ACTIVITIES P'A;,Y
INCLUDE DEFINING THE NEED, RESEARCHING AVAILABLE ALTERNATIVES, EVALUATI",G
COMPETING PROPOSALS, SELECTING OR CONTRACTING FOR THE SYSTEM/CrPCNENT TO BE
ACQUIRED, ETC.

ACQUISITION MANAGEMENT
ALL ACTIVITIES CONDUCTED BY THE ACQUIRING ORGANIZATION TO INSURE THAT THE
SOFTWARE SYSTEM OR COMPONENT EFING ACQUIRED IS DEVELOPED IN ACCORDANCE WITH
ITS REQUIREMENTS.

ACTIVATE
SYNONYM FOR INVOKE (ANSI-X3H1)

ACTUAL DATA
DATA DESCRIBING THE RESULTS OF PROGRAMMING ACTIONS FOR A PROJECT THAT WILL
BE THE PRIMARY DATA INCLUDED IN THE MANAGEMENT REPORTS. (DAN 137)

ADA
HIGHER ORDER PROGRAMMING LANGUAGE ORIENTED TO COMMAND AND CONTROL USE. SEE
ALSO: DOD COMNON HIGH ORDER LANGUAGE

ADAPTABILITY
ADAPTABILITY IS A MEASURE OF THE EASE WITH WHICH A PROGRAM CAN BE ALTERED TO
FIT DIFFERING USER IMAGES AND SYSTEM CONSTRAINTS. (DAN 758) (2) CODE
POSSESSES THE CHARACTERISTIC ADAPTABILITY TO THE EXTENT THAT IT CAN BE
EASILY ALTERED TO FIT DIFFERING USER IMAGES AND SYSTEM CONSTRAINTS. (DAN
239)

ADAPTION
MODIFICATION OF EXISTING SOFTWARE IN ORDER THAT IT MAY BE USED AS A MODULE

2

IN A PROGRANM DEVELOPMENT, AS OPPOSED TO DEVELOPING ANOTHER OCULL FUP THAT
SAME PURPOSE. (LAN 1153)

ADAPTIVE TESTING
THE GOAL OF ADAPTIVE TESTING IS TO PROVIDE At, EFFECTIVE MEANS TO ILELNT1FY
THE BOUNDARY OF A BALLISTIC MISSILE DEFENS[S(IT6ARE rIFPLfLM NT1TIO,. TH
PERFORMANCE BOUNDARY WILL BE REACHED BY SYlILMAT TLLY

PF'ETOPHNC THL THEAT
SCENARIO IN SUCH A WAY AS TO DEGRADE THE SY'Ld K, PMNCE. (DAN 420)

AED PROGRAMMING LANGUAGE
(AUTOMATED ENGINEERING DESICN) A HIGHER (LLP OuF<!JrI, LANGUAGE BASED ON
ALGOL. (NASA)

AIRBORNE WARNING AND CONTROL SYSTEM (AWACS)
A BOEING 707-320 CONVERTEL TO AN AIR FURCL E-2/, USES AN AIRBORNE RpnAR
PLATFORM AND IS LOADED WITH THE LATEST COMVLNICATIONS, RADAR, AND CU}IPUTE
EQUIPMENT, ENABLING THE E-3A CREW T(PERF(RM CU'MAND AND CONTROL SUPPOK] FOR
A WIDE RANGE OF MISSIONS. (DAN 385)

ALGOL
(ALGORITHMIC LANGUAGE) A BLOCK-STRUCTURLE HIGH LEVEL PROGRAMEINc LANGUAGE
USED TO EXPRESS COMPUTER PROGRAMS EY ALGuRVHMS.

ALGORITHM
A COLLECTION OF OPERATIONS ORGANIZED TO BE PERF'RMED IN A CLTAIN ORDER WHEN,
APPLIED TO DATA OBJECTS. THE ARRANGEMENT OF THE OPERATIONS MAY LEAD TO S0E
OF THE OPERATIONS BEING PERFORMED MULTIPLE TIfES AND OTHLRS NCT EEING
PERFORMED AT ALL. THE SELECTION AND ORDERING OF THE PERFORMANCE OF THE
OPERATIONS MAY DEPEND IN PART ON THE DATA OBJECTS TO WHICH THE ALGORITHM IS
APPLIED. IF AN ALGORITHM IS APPLIED TWICE TO THE SAME DATA OBJECT, THE
OPERATIONS WILL BE PERFORMED IN THE SAME ORDER (YIELDING THE SANE RESULTS).
THE ARRANGEMENT OF THE OPERATIONS OF AN ALGORITHM WHICH DETERPMINES THEIR
SELECTION AND ORDER OF PERFORMANCE IS INDICATED BY THE CONTROL STRUCTURES
(AND CONTROL STATEMENTS) USED TO DEFINE THE ALGORITHM. AN ALGORITHM MAY BE
USED TO DEFINE AN OPERATION (ON ONE LEVEL OF ABSTRACTION) IN TERMS OF OTHER
OPERATIONS (ON A LOWER LEVEL OF ABSTRACTION). (ABBOTT) (2) A PRESCRIBED SET
OF WELL-DEFINED RULES OR PROCESSES FOR THE SOLUTION OF A PROBLEM IN A FINITE
NUMBER OF STEPS. IN PRINCIPLE, THE STEPS ARE SUFFICIENTLY BASIC AND DEFINITE
THAT A HUMAN CAN COMPUTE ACCORDING TO THE PRESCRIBED STEPS EXACTLY AND IN A
FINITE LENGTH OF TIME, USING PENCIL AND PAPER. (DAN 1153) CONTRAST WITH
HEURISTIC.

ALGORITHM ANALYSIS
THE COMPARISON OF DIFFERENT ALGORITHMS AVAILABLE FOR THE ACCOMPLISHMENT OF A
GIVEN TASK WITH THE PURPOSE OF SELECTING THE ONE ALGORITHM WHICH IS OPTIMAL
WITH RESPECT TO TIME, SPACE, AND PERFORMANCE REQUIREMENTS. THE INPUTS TOTHE
ANALYSIS PROCESS ARE THE SET OF ALL DATA VALUES IN THE DOMAIN OF THE
ALGORITHM, THE NUMBER OF TIMES OPERATIONS CRITICAL TO THE ALGORITHM MUST BE
PERFORMED, AND THE EXPECTED VS. WORST CASE TO BE ENCOUNTERED. THE OUTPUTS
ARE SPACE (MEMORY) UTILIZATION, RUNNING TIMES, AND AVERAGE VS. WORST CASE
FIGURES FOR BOTH SPACE AND TIME FOR EACH ALGORITHM UNDER ANALYSIS.

ALGORITHM DESIGN
THE PROCESS OF SELECTING A "BEST KNOWN" ALGORITHM ACCORDING TO A BALANCED

3

*1

SET OF ALGORITHM CHARACTERISTICS WHICH BEST SATISFY THE REQUIREMENTS OF THE
SITUATION IN WHICH THE ALGORITHM IS TO PERFORM.

ALIAS
AN ADDITIONAL NAME BY WHICH AN ITEM IS KNOWN. SLE ALSO SYNONYM (ANSI-X3HI)
(2) AN ADDITIONAL NAME BY WHICH A MEMORY LOCATION CAN BE REFERENCED.

ALLOCATE
TO APPORTION TO PARTICULAR PERSONS OR THINGS. TO SET APART OR EARMARK.
(ANSI-X3HI)

AMBIGUOUS
CAPABLE OF BEING UNDERSTOOD IN 2 OR MORE SENSES. (ANSI-X3H1)

ANALYTICAL MODELING
THE TECHNIQUE USED TO EXPRESS MATHEMATICALLY (USUALLY BY A SET OF EQUATIONS)
A REPRESENTATION OF SOME REAL PROBLEM. SUCH MODELS ARE VALUABLE FOR
ABSTRACTING THE ESSENCE OF THE SUBJECT OF INQUIRY. BECAUSE EQUATIONS
DESCRIBING COMPLEX SYSTEMS TEND TO BECOME COMPLICATED AND OFTEN IMPOSSIBLE
TO FORMULATE, IT IS USUALLY NECESSARY TO MAKE SIMPLIFYING ASSUNPTIOFS WHICH
MAY DISTORT ACCURACY. SPECIFIC LANGUAGE AND SIMULATION SYSTEMS MAY SERVE AS
AIDS TO IMPLEMENTATION. (DAN 134)

ANALYZER
AN ANALYZER IS A COMPUTER PROGRAM WHICH IS APPLIED TO ANOTHER PROGRAtI TO
PROVIDE ANALYTICAL INFORMATION. AN ANALYZER BREAKS THE PROGRAM INTO
IDENTIFIABLE SMALL PARTS CALLED SEGMENTS, AND USES THE RESULTING SEGMENTS TO
PRODUCE STATISTICAL INFORMATION. THIS INFORMATION CAN INCLUDE EXECUTION
FREQUENCY STATISTICS, PROGRAM PATH ANALYSIS, AND/OR SOURCE CODE SYNTAX
ANALYSIS. AN ANALYZER MAY BE USED TO DETERMINE (I) THE DEGREE TO WHICH TEST
CASES EXERCISE THE STRUCTURE OF THE PROGRAM; (2) WHICH PROGRAM SEGMENTS ARE
NOT EXECUTED; (3) WHICH SEGMENTS ARE HEAVILY EXECUTED (AND THUS ARE
CANDIDATES FOR OPTIMIZATION); (4) WHICH TEST CASES NEED TO BE RERUN IF A
PROGRAM SEGMENT IS CHANGED. (SET) (2) A COMPUTER PROGRAM USED TO PROVIDE
SOURCE LANGUAGE OR EXECUTION FREQUENCY STATISTICS AT THE PROGRAM OR
SOURCE-STATEMENT LEVEL TO ASSIST IN PERFORMANCE EVALUATION AND DETERMINATION
OF TEST CASE COVERAGE. (DAN 134)

ANIMATION
ANIMATION (IS AN ACTIVITY WHICH--ED.) DISPLAYS THE BEHAVIOR OF A MODEL IN
TERMS OTHER THAN THOSE IN WHICH THE MODEL ITSELF IS TO BE EXPRESSED. IT IS
USED TO DEMONSTRATE THE MODEL'S BEHAVIOR TO INTERESTED PARTIES UNWILLING, OR
UNABLE, TO DEDUCE THIS FROM TIHE DESCRIPTION OF THE MODEL ITSELF, IN ORDER TO
SEEK THEIR ACKNOWLEDGEMENT THAT THE MODEL CONFORMS TO SOME REQUIREMENT.
ANIMATION CAN BE USED AS A TECHNIQUE TO COMMUNICATE WITH A CUSTOMER TO
ENSURE THAT THE FORMAL SPECIFICATIONS SATISFY THE CUSTOMERS REQUIREMENTS.
INTERACTION OF REQUIREMENTS REVISIONS, SPECIFICATION CHANCES AND
RE-ANIMATION MUST CONTINUE UNTIL THE CUSTOMER SIGNS OFF. (DAN 874) SEE ALSO
ANIMATION TOOLS.

ANIMATION TOOLS AND/OR TECHNIQUES
ANY PROCEDURE, LEVICE, OR TECHNIQUE WHICH CAN BE USED TO ANIMATE A MODEL.
EXAMPLES ARE TEST TOOLS, THE TESTING PROCESS, PETRI NETS, META-PROGRAMmING,
META-LANGUAGES, ETC. (DAN 874)

4

APOLLO FLIGHT SOFTWARE
SOFTWARE FOR THE APOLLO FLIGHT INCLUDED THE EXECUTIVE, DISPLAY, INTERFACE,
INTERPRETER, MUCH OF THE HARDtARE INTERFACE LOGIC, INTERRUPT HANDLING AND
COMPUTER SELF-TEST. (DAN 292)

APPLICATION-ORIENTED LANGUAGE
AN APPLICATION-ORIENTLD LANGUAGE IS ONE WHICH HAS FACILITIES AND/OR
NOTATIONS WHICH ARE USEFUL PRIMARILY FOR A SINGLE APPLICATION AREA. (E.G. A
LANGUACE FOR STATISTICAL ANALYSIS OR MACHINE DESIGN). (DAN 448)

APPLICATIONS SOFTWARE
SOFTWARE/PROGRAM SPECIFICALLY PRODUCED FOR A PARTICULAR USE OF THE COMPUTER
SYSTEM. APPLICATION SOFTWARE/PROGRAMS USUALLY REQUIRE AN OPERATING SYSTEM
FOR GENERAL CONTROL. USUALLY AN APPLICATION PROGRAM CONSISTS OF A N ET OF
INTEGRATED TASKS TO PROVIDE A PRIMARY SYSTEM FUNCTION SUCH AS NAVIGATION OR
GUN FIRE CONTROL. (DAN 1201-MODIFIED)

ARBITER
A MECHANISM FOR EFFECTING ThE MUTUALLY EXCLUSIVE USE OF A SHARED RESOURCE
AMONG CONCURRENT PROCESSES. (DAN 1153)

ARCHITECTURAL DESIGN
SELECTION AMONG MAJOR ALTERNATIVES RELATIVE TO CONTROL LCGIC AND DATA
STRUCTURAL TOPOLOGIES, MODULE COUPLING MODES, CLOCKING, PROTOCOLS, RESOURCE
ALLOCATION STRATEGIES, ETC., TO THAT DEGREE OF DETAIL WHICH PROVIDES
CONVINCING EVIDENCE OF PRODUCTION FEASIBILITY AND WHICH PERMITS COST AND
SCHEDULE ESTIMATES OF PREDEFINED ACCURACY. (DAN 1153)

ARCHITECTURAL FAMILIES
A DOMAIN OF MACHINES BELONGS TO AN ARCHITECTURAL FAMILY IF THE MACHINES HAVE
ONLY DIFFERENCES IN INSTRUCTION SET. SUCH M ACHINES CAN,HOWEVER, HAVE
SIGNIFICANT VARIATION IN OPERATING SYSTEM FUNCTIONS AND SERVICES, WHICH
AFFECT PROGRAMS AND EXTERNAL INTERFACES.

ARTIFICIAL INTELLIGENCE
(1) THE CAPABILITY OF A DEVICE TO PERFORM FUNCTIONS THAT ARE NORMALLY
ASSOCIATED WITH HUMAN INTELLIGENCE, SUCH AS REASONING, LEARNING, AND
SELF-IMPROVEMENT. (ANSI-X3)

ASSEMBLE
TO TRANSLATE A SET OF SOME LANGUAGE STATEMENTS INTO A SIMPLE FORM, USUALLY
THE MACHINE CODE OF A PARTICULAR MACHINE. THE TRANSLATION IS OFTEN A
ONE-TO-ONE TRANSFORMATION. (ANSI-X3HI)

ASSEMBLER
A COMPUTER PROGRAM USED TO ASSEMBLE. SYNONYMOUS WITH ASSEMBLY PROGRAM.
(ANSI-X3) (2) A TOOL THAT TRANSLATES PROGRAMS WRITTEN IN SYMBOLIC MACHINE
LANGUAGE INTO ACTUAL MACHINE LANGUAGE PROGRAMS. (DAN LD7)

ASSEMBLY LANGUAGE
A LOW LEVEL PROGRAMMING LANGUAGE WHICH IS ACTUALLY A SYMBOLIC IACHINE
LANGUAGE. (NASA)

ASSERTION

5

AN ASSERTION IS A LOGICAL EXPRESSION THAT SPECIFIES AN INSTANTANEOUS
CONDITION OR RELATION AMONG THE VARIABLES OF A PROGRAI. ASSERTIONS ARE USED
IN VARIOUS METHODS OF PROGRAM VERIFICATION AS WELL AS FOR PROGRAM TESTING,
SYNTHESIS, AND ABSTRACTION. (SET) (2) A STATEMENT DEFINING PROPERTIES OR
BEHAVIOR AT A SPECIFIC POINT IN A COMPUTER PROGRAM. (NASA)

ASSESSMENT OF CORRECTNESS
THE PROCESS OF JUDGING THAT A PROGRAM (OR PART) IS CORRECT, BASEO ON A
PARTIAL DEMONSTRATION OF ITS ACTUAL OR ENVISIONED BEHAVIOR. DEMONSTRATION
MAY RANGE FROM RIGOROUS, FORMAL MATHEMATICAL PROOF TO INFORMAL RATIONALE, OR
FROM EXHAUSTIVE TESTING TO MERE PROGRAM CHECKOUT. (DAN 1153)

ASSIGNMENT STATEMENT
AN INSTRUCTION USED TO EXPRESS A SEQUENCE OF OPERATIONS, OR USED TO ASSIGN
OPERANDS TO SPECIFIED VARIABLES OR SYMBOLS, OR BOTH. (ANSI-X3) (2) ALL
STATEMENTS THAT CHANGE THE VALUE OF A VARIABLE AS THEIR MAIN PURPOSE (E.G.
ASSIGNMENT OR READ STATEMENTS, BUT THE ASSICNMENT OF THE DO LOOP VARIABLE IN
A DO STATEMENT SHOULD NOT BE INCLUDED). (SEL)

ASSURANCE TECHNOLOGY
THE BODY OF TECHNOLOGY USEFUL IN FOSTERING, ENSURING, AND CONFIRMING THAT A
SCFTWARE PRODUCT PROPERLY FULFILLS ITS INTENDED PURPOSE.(S) (NASA)

ASTROS
A JOINT SPACE AND MISSILE TEST CENTER (SAMTEC) AND RADC EFFORT TO VALIDATE
THE CLAIMED BENEFITS FROM THE APPLICATION OF MODERN PROGRAMMING PRACTICES IN
AN AIR FORCE OPERATIONAL ENVIRONMENT. (DAN 226)

ATTACK
AN ATTACK ON A SYSTEM IS ANY DEFINED CIRCUMSTANCE WHICH RESULTS IN A GIVEN
PROBABILITY OF ERROR, FAILURE, ERROR DETECTION, ERROR CORRECTION, SECURITY
BREACH, ETC. AN ATTACK MIGHT ASSUME THE FORM OF SABOTAGE, INVALID DATA
VALUES, INVALID COMBINATIONS OF VALID DATA ELEMENT VALUES IN INPUT, A
PROGRAM LOGIC ERROR, ATTEMPT BY AN OPERATOR TO MOUNT AN OLD GENERATION OF
THE "CORRECT" FILE, BREAKDOWN OF A COMPUTER'S AIR-CONDITIONING DURING A HEAT
WAVE, ETC. (DAN 781)

ATTACK PROBABILITY
THE PROBABILITY OF AN ATTACK OF A GIVEN TYPE ON A GIVEN SYSTEM DURING A
SPECIFIED TIME INTERVAL. (DAN 781)

ATTACK REPULSION PROBABILITY
SYNONOMOUS WITH SECURITY PROBABILITY. (DAN 781)

ATTITUDE/ORBIT
ANY SOFTWARE COMPONENT THAT IS DIRECTLY RELATED TO EITHER THE ATTITUDE
DETERMINATION (OR CONTROL) TASK OR THE ORBIT DETERMINATION (OR CONTROL) TASK
FALLS INTO THIS CATEGORY. THIS SHOULD INCLUDE FULL SYSTEMS IN GENERAL (SUCH
AS GTDS, OR ISEE-B ATTITUDE) AS WELL AS SPECIFIC MODULES SUCH AS
DETERMINISTIC ATTITUDE OR DCCONES. (SEL)

ATTRIBUTE LIST
A LIST OF THE IDENTIFIERS USED BY A PROGRAM DESCRIBING THE CHARACTERISTICS
OF THOSE IDENTIFIERS, AND SHOWING THE SOURCE STATEMENTS WHERE THEY ARE FIRST

6

"Ag

DEFINED (OR FIRST USED), AND, FUR VARIABLLS, THEIR (RELATIVE) STORAGE
LOCATIONS. (SEL)

AUDIT
A SOFTWARE AUDIT IS A REVIEW BY OUTSIDE (NOT INVOLVED IN THE DEVELOPMENT OF
THE PROJECT) SOFTWARE DEVELOPMENT EXPERTS FOR THr PURPOSES OF ASSESSING
PROGRESS, MAINTAINING SCHEDULES, PRODUCING RECOMMENDATIONS CONCERNING AREAS
OR CONCEPTS THAT HAVE BEEN OVERLOOKED AND RATING THE RELATIVE EFFICIENCIES
OF VARIOUS APPROACHES TO PROBLEMS. (DAN 300) (2) A FORMAL OR OFFICIAL
EXAMINATION THAT ATTESTS TO THE CONFORMITY (OR NON-CONFORMITY) BETWEEN TWO
SUPPOSED EQUIVALENT ENTITIES, ACCORDING TO A PREDEFINED SET OF RULES. (DAN
1153) (3) THE FOLLOWING OF OPERATING SYSTEM TRACERS RECORDED TO DOCUMENT
ACCOUNTABILITY IN COST, EQUIPMENT USED, AND FILES ACCESSED.

AUGMENTABILITY
CODE POSSESSES THE CHARACTERISTIC AUGMENTACILITY TO THE EXTENT THAT IT CAN
EASILY ACCOMODATE EXPANSION IN COMPONENT COMPUTATIONAL FUNCTIONS OR DATA
STORAGE REQUIREMENTS. THIS IS A NECESSARY CHARACTERISTIC FOR MODIFIABILITY.
(DAN 239)

AUTOMATA THEORETIC
A TESTING STRATEGY WHICH HAS THE FOLLOWING CHARACTERISTICS: A) ONLY THE
CONTROL STRUCTURE OF THE DESIGN IS CHECKED. B) IT DOES NOT REQUIRE AN
"EXECUTABLE" SPECIFICATION. C) TEST SEQUENCES ARE GUARANTEED TO REVEAL ANY
ERRORS IN THE CONTROL STRUCTURE, PROVIDED THAT SOME REASONABLE ASSUMPTIONS
ARE SATISFIED. (DAN 308)

AUTOMATABILITY
"AUTOMATABLE" MEANS THAT THE HUMAN OPERATOR NOT ONLY CAN CONTROL THE SYSTEM
COMPLETELY MANUALLY BUT ALSO CAN DEFINE PORTIONS OF THE SYSTEM OPERATIONS AS
PROCEDURES TO BE PERFORMED AUTOMATICALLY BY THE SYSTEM. (DAN 346)
AUTOMATABILITY WOULD THUS INDICATE THE DEGREE TO WHICH A SYSTEM IS
AUTOMATABLE. (ED)

AUTOMATE
TO CONVERT A PROCESS/PROCEDURE DONE MANUALLY TO A PROCESS/ PROCEDURE DONE
AUTOMATICALLY.

AUTOMATED DESIGN TOOLS
COMPUTER PROGRAMS USED TO PROVIDE AN UNDERSTANDABLE REPRESENTATION OF THE
SOFTWARE DESIGN AS IT EVOLVES.

AUTOMATED DOCUMENTATION
DOCUMENTATION WHICH IS PRODUCED BY AUTOMATED MEANS, USUALLY DY A SPECIALIZED
PROGRAM OR A PROGRAM LIBRARY SYSTEM.

AUTOMATED ERROR DETECTION
THE USE OF AUTOMATED MEANS TO DETECT INCONSISTENCIES BETWEEN ASSERTIONS
ABOUT THE INPUTS AND OUTPUTS OF THE VARIOUS ELEMENTS OF THE SOFTWARE

AUTOMATED PATH ANALYSIS
A SOFTWARE TECHNIQUE WHICH SCANS SOURCE CODE IN ORDER TO DESIGN AN OPTIONAL
SET OF TEST CASES TO EXERCISE THE PRIMARY PATHS IN A SOFTWAPE MODULE. (DAN
142)

7

AUTOMATED PROGRAM PROVING
SEE AUTOMATED VERIFICATION TOOLS.

AUTOMATED TEST GENERATOR
A COMPUTER PROGRAM THAT ACCEPTS INPUTS SPECIFYING A TEST SCENARIO IN SOML
SPECIAL LANGUAGE, GENERATES THE EXACT COMPUTER INPUTS, AND DETERMINES THE
EXPECTED RESULTS. (DAN 134)

AUTOMATED TESTING
TESTING, USUALLY BY A SOFTWARE PROGRAM WHICH IS GENERATED EY ALGORITHsS AND
WHICH CONSTITUTES AN EFFECTIVE TEST FOR A SOFTWARE SYSTEM OR A COMPONENT OF
THE SYSTEM. (DAN 234)

AUTOMATED TOOLS
ANY PRCGRAMS WHOSE PURPOSE IS TO AID IN SOFTWARE DEVELOPMENT (E.G.,
COMPILER, TEXT EDITOR, DUMP OR TRACE FACILITY, LTC.). THIS INCLUDES
COMPILERS BUT NOT STANDARD OPERATING SYSTEM SOFTWARE (E.G., LINK EDITOR).
(SEL) (2) COMPUTER PROGRAMS WHICH PERFORM VARIOUS SOFTWARE DESIGN, ANALYSIS,
TEST, AND MAINTENANCE FUNCTIONS THROUGH THE AUTOMATION OF ASSOCIATED METHODS
OR PROCEDURES. (NASA)

AUTOMATED UNIT TEST (AUT)
A MODULE TEST DRIVER TOOL DEVELOPED FOR USE WITHIN IBM CORP.

AUTOMATED VERIFICATION SYSTEMS
COMPUTER PROGRAMS THAT INSTRUMENT THE SOURCE CODE BY GENERATING AND
INSERTING COUNTERS AT STRATEGIC POINTS TO PROVIDE MEASURES OF TEST
EFFECTIVENESS. THEY PROVIDE DATA THAT DETAILS HOW THOROUGHLY THE SOURCE CODE
HAS BEEN EXERCISED. (DAN 134)

AUTOMATED VERIFICATION TOOLS
AUTOMATED TOOLS FOR QUANTIFYING THE EFFECTIVENESS OF TEST DATA IN TERMS OF
EXERCISING THE PROGRAM CONTROL STRUCTURES. SOME AUTOMATED VERIFICATION TOOLS
CAN BE USED TO GENERATE DESCRIPTIVE PROGRAM DOCUMENTATION REPORTS, PRCVIDE
DYNAMIC EXECUTION TRACES OF MODULES AND DECISION-TO-DECISION (DD) PATHS,
ASSIST IN GENERATION OF ADDITIONAL TEST CASES AND FLAG UNEXPECTED EXECUTION
BEHAVIOR THROUGH THE USE OF COMPUTATION bIRECTIVES. (DAN 393)

AUTOMATIC DATA COLLECTION
THE COLLECTION OF DATA ABOUT A PROGRAIl BY AUTOMATED MEANS, USUALLY DURING
THE EXECUTION OF THE PROGRAM. THE COLLECTED DATA/STATISTICS MAY BE PRINTED
OUT AT THE END OF A PROGRAM'S EXECUTION OR MAY BE STORED AUTOMATICALLY. THE
DATA/STATISTICS MAY INCLUDE STATEMENT FREQUENCY PROFILES, DYNAMIC STATEMENT
COUNTS, POST-MORTEM DUMPS, TRACE TABLES, AND OTHER FORMS OF COLLECTED DATA.
(DAN 437-MODIFIED)

AUTOMATIC DEBUGGING
SYNONOMOUS WITH AUTOMATED ERROR DETECTION

AUTOMATIC PROGRAMMING
THE PROCESS OF USING A COMPUTER TO PERFORM SOME STAGES OF THE WORK INVOLVED
IN PREPARING A COMPUTER PROGRAM. SYMONOMOUS WITH AUTOMATIC CODING. (ANSI-X3)
(2) USE OF MACHINE INTERACTIVE TECHNIQUES TO SELECT PROGRAm MODULES ALREADY
IN A PROGRAM LIBRARY TO BE USED AS MODULES IN A NEW PROGRAM OR PROJECT. (DAN

8

..... --

232)

AUTOMATIC SOFTWARE TEST DRIVERS
A SOFTWARE TOOL WHICH CONTROLS AND MONITORS THE EXECUTION OF SOFTWARE TESTS.
(DAN 282)

AVAILABILITY
AVAILABILITY IS THE PROBABILITY THAT COMPUTER SOFTWARE IS "UP" OR CAPABLE OF
FUNCTIONING IN ACCORDANCE WITH REQUIREMENTS AT ANY TIME. THIS PROBABILITY IS
OFTEN MEASURED AS THE RATIO OF "UP" TIME TO TOTAL NEED TIME... THE COMPUTER
SOFTWARE MAY BE CLASSIFIED AS NOT AVAILABLE IF IT IS BLOCKED BY ANOTHER
USER, OR IF IT CONTAINS ERRORS AND IS BEING CORRECTED. (SET) (2) THE RATIO
OF SYSTEM UP-TIME TO THE TOTAL OPERATING TIME. (DAN 232) (3) THE PROBABILITY
THAT A SYSTEM IS OPERATING SATISFACTORILY AT ANY POINT IN TIME, WHEN USED
UNDER STATED CONDITIONS. (DAN 781) (4) THE PROBABILITY THAT A SYSTEM,
SUBSYSTEM, OR COMPONENT WILL BE FUNCTIONALLY READY OR OPERABLE AT SOME
SPECIFIED POINT IN TIME. (NASA)

AVAILABILITY MODEL
A MODEL (OR MODELS) WHICH PREDICTS THE EXPECTED RATIO OF SYSTEM UP-TIME TO
THE TOTAL OPERATING TIME. (DAN 232)

AVIONICS APPLICATIONS
SOFTWARE ENGINEERING APPLIED TO FLIGHT CONTROL SYSTEMS FOR AIRCRAFT.(DAN
258)

BALLISTIC MISSILE DEFENSE
INDEXING TERM. REFERS TO SOFTWARE USED AS A COMPONENT IN BALLISTIC MISSILE
DEFENSE SYSTENS.

BASELINE DIAGRAM
AN ORDERED CHART LISTING ALL COMPONENTS IN A SYSTEM WHERE A CONNECTION FROM
A HIGHER COMPONENT TO A LOWER ONE INDICATES THAT THE HIGHER COMPONENT CALLS
THE LOWER ONE. (SEE)

BASELINE PROGRAM
A PROGRAM POSSESSING WELL DEFINED CAPABILITIES AND FUNCTIONS WHICH IS
DECREED TO BE THE STARTING POINT FOR FURTHER PROGRAM DEVELOPMENT. (DAN 1201)

BASIC
BEGINNER'S ALL-PURPOSE SYMBOLIC INSTRUCTION CODE. AN ALGEBRAIC
PROBLEM-ORIENTED HIGH LEVEL PROGRAMMING LANGUAGE INTENDED FOR INTERACTIVE
USE.

BATCH PROCESSING
THE PROCESSING OF DATA OR THE ACCOMPLISHMENT OF JOBS ACCUMULATED IN ADVANCE
IN SUCH A MANNER THAT EACH ACCUMULATION THUS FORMED IS PROCESSED OR
ACCOMPLISHED IN THE SAME RUN. (ANSI-X3) (2)PERTAINING TO THE TECHNIQUE OF
EXECUTING A SET OF COMPUTER PROGRAMS SUCH THAT EACH IS COMPLETED BEFORE THE
NEXT PROGRAMI OF THE SET IS STARTED. (ANSI-X3) (3) USAGE OF A COMPUTER WHERE
THE ENTIRE JOB IS READ INTO THE MACHINE BEFORE THE PROCESSING BEGINS.
(INTERACTIVE USAGE ALWAYS IS VIA A TERMINAL, BATCH USAGE MAY BE VIA A
TERMINAL OR A CARD DECK.) (SEL)

9

BAYESIAN MODEL
INDEXING TERM. REFERS TO THE MATHEMATICAL METHODOLOGY USED TO CONSTRUCT, OR
WHICH IS THE FORM ASSUMED BY, A PARTICULAR MODEL.

BEBUGGING
SYNONOMOUS WITH BUG SEEDING/TAGGING

BEGIN-END BLOCK
BEGIN-END BLOCK IS A COLLECTION OF COMPUTER PROGRAM STATEMENTS BRACKETED BY
BEGIN AND END STATEMENTS. THE LATTER DELIMITS THE SCOPE OF NAMES AND IS ALSO
ACTIVATED BY NORMAL SEQUENTIAL FLOW OF CONTROL. ... THE TERM CAME FROM THE
ALGOL 60 PROGRAMMING LANGUAGE. THESE STATEMENTS ARE OFTEN USED TO DEFINE THE
LIMITS OF A COLLECTION OF CODE SUCH AS A MODULE OR SUBROUTINE. (SET)

BEHAVIOR MODELLING
DESCRIBING WHAT A COMPONENT OF A SOFTWARE SYSTEM WILL DO IN TERMS OF AN
ABSTRACTION OF THE COMPONENT'S OPERATION WHICH FOCUSES UPON EFFECT RATHER
THAN CAUSE. (DAN 242)

BEHAVIORAL MODEL
A MATHEMATICAL FUNCTION THAT RELATES CAUSE AND EFFECT QUANTITATIVELY. (DAN
255)

BIT
A CONTRACTION OF THE TERM "BINARY DIGIT" AND HENCE EITHER A 0 OR A I IN THE
BASE-TWO NUMBER SYSTEM. (NASA)

BLACK BOX
AN ACTUAL OR A CONCEPTUAL DEVICE WHICH TRANSFORMS INPUT DATA INTO OUTPUT
DATA ACCORDING TO A PRESCRIBED FUNCTIONAL RELATIONSHIP, BUT WHOSE INTERNAL
MECHANIZATION IS NOT NECESSARILY KNOWN. (NASA)

BLOCK DIAGRAM
A DIAGRAM OF A SYSTEM, INSTRUMENT, OR COMPUTER, IN WHICH THE PRINCIPAL PARTS
ARE REPRESENTED BY SUITABLY ASSOCIATED GEOMETRICAL FIGURES TO SHOW BOTH THE
BASIC FUNCTIONS AND THE FUNCTIONAL RELATIONSHIPS AMONG THE PARTS. (ANSI-X3)

BLOCK-STRUCTURED LANGUAGE
A HIGHER-ORDER PROGRAMMING LANGUAGE WHICH DEMARCATES RELATED SEQUENCES OF
CODE, OR BLOCKS, USUALLY WITH THE STATEMENTS BEGIN AND END. (NASA)

BOTTOM-UP DESIGN
THE DESIGN OF THE SYSTEM STARTING WITH THE LOWEST LEVEL ROUTINES AND
PROCEEDING TO THE HIGHER LEVEL ROUTINES THAT USE THE LOWER LEVELS. (SEL)
CONTRAST WITH TOP-DOWN DESIGN.

BOTTOM-UP IMPLEMENTATION
THE IMPLEMENTATION OF THE SYSTEM STARTING WITH THE LOWEST LEVEL ROUTINES AND
PROCEEDING TO THE HIGHER LEVEL ROUTINES THAT USE THE LOWER LEVELS. (SEL)
CONTRAST WITH TOP-DOWN IMPLEMENTATION.

BUDGETING AND ESTIMATING
THOSE ACTIVITIES THAT DETERMINE THE LEVELS OF EFFORT AND RESOURCES NEEDED TO
ACCOMPLISH A PROJECT. (DAN LD-7)

10

* 1 *'

BUG
ONE OR MORE SOFTWARE BUGS EXIST IN A SYSTEM IF A SOFTWARE CHANGE IS REQUIRED
TO CORRECT A SINGLE MAJOR ERROR OR MINOR ERROR SO AS TO MEET SPECIFIED OR
IMPLIED SYSTEM PERFORMANCE REQUIREMENTS. (DAN 31)

BUG SEEDING/TAGGING
THE PROCESS OF ADDING BUGS (OR ERRORS) TO THOSE ALREADY ASSUMED TO BE IN A
PROGRAM WITH THE PURPOSE OF OBTAINING AN ESTIMATE FOR THE NUMBER OF NATURAL
BUGS REMAINING IN THE PROGRAM. IT IS ALSO ASSUMED THAT RATIO OF THE NUMBER
OF UNDISCOVERED SEEDED BUGS TO THE TOTAL NUMBER OF BUGS SEEDED CAN SERVE AS
AN INDICATION OF THE DEGREE OF "DEBUGGEDNESS" OR RELIABILITY OF THE PROGRAM.
(DANS 232 AND 781)

BUILDING BLOCK
GENERATION OF A PROGRAM AS AN ISOLATED BUILDING BLOCK. NECESSARY INDEPENDENT
SUBPROGRAMS ARE GENERATED FIRST, FOLLOWED BY GENERATION OF THE DEPENDENT
FUNCTIONS. (DAN 1201)

BUILDS
BUILDS ARE FUNCTIONALLY-ORIENTED SECTIONS OF A MORE COMPLEX SOFTWARE
DEVELOPMENT PROJECT. THE "BUILDS" APPROACH TO SOFTWARE DEVELOPMENT IS
DESIGNED TO IMPROVE THE QUALITY OF THE TESTING PROCESS BY MAINTAINING A
VISIBLE CONNECTION BETWEEN REQUIREMENTS AND THE TEST PLANS AND PROCEDURES
DURING THE ENTIRE DEVELOPMENT PROCESS. (DAN 326)

BUILT-IN FLEXIBILITY
BUILT-IN FLEXIBILITY IS THE ABILITY OF A SYSTEM TO IMMEDIATELY HANDLE
DIFFERENT LOGICAL SITUATIONS. BUILT-IN FLEXIBILITY INCREASES SYSTEM
COMPLEXITY PROPORTIONATELY. IN A WELL-DESIGNED SYSTEM THE INITIAL MEASURE OF
BUILT-IN FLEXIBILITY WILL BE ALMOST EQUAL TO THE COMPLEXITY MEASURE. (DAN
781)

BUILT-IN-TEST
TEST CAPABILITY WHICH IS INTEGRAL TO A UNIT AND WHICH MAY PERFORM SYSTEM
CHECKS AS WELL AS SELF-TEST FUNCTIONS. (NASA)

BUSINESS AND FINANCIAL APPLICATIONS
SOFTWARE OR SOFTWARE SYSTEM COMPONENTS RELATED TO SOME ACCOUNTING TASK,
FINANCIAL DATA FORMATTING, BUSINESS DATA RETRIEVAL OR REPORTING, OR POSSIBLY
PERSONNEL DATA MANAGEMENT. (SEL)

BYTE
A STRING OF BITS WHOSE LENGTH IS THE SMALLEST ACCESSIBLE AS A UNIT IN A
COMPUTER MEMORY; ALSO, THE LENGTH USED TO REPRESENT A CHARACTER. (NASA)

CALIBRATION ERROR
AN ERROR PURPOSELY INSERTED INTO A PROGRAM TO SERVE AS A MEANS FOR GAUGING
THE COMPLETENESS OF TESTING TO UNCOVER INDIGENOUS ERRORS. (DAN 1153)

CAPABILITY
A CAPABILITY IS DEFINED AS AN ABSTRACT ENCAPSULATION OF THE DATA NEEDED TO
DEFINE ACCESS TO A PROTECTED OBJECT. --WITH RESPECT TO SECURITY. (DAN 724)
(2) CPPABILITIES ARE DISCRETELY IDENTIFIED ELEMENTS OF PERFORMANCE WHICH ARE
EXPECTED (EITHER FORMALLY OR INFORMALLY) OF A PRODUCT OR COMBINATION OF

11

PRODUCTS. A FAILURE IS THE ABSENCE OF ONE OR MORE CAPABILITILS DURING THE
USE OF A PRODUCT. SEVERITY OF A FAILURE IS DIRECTLY PROPORTIONAL TO THE
VALUE OF THE ABSENT CAPABILITIES TO THE USER. AN ERROR BECOMES A FAILURE
WHEN SOFTWARE IS INCAPABLE OF RE-ESTABLISHING ITS CAPABILITIES IN AN ERROR
ENVIRONMENT. --WITH RESPECT TO EFFECTIVENESS. (DAN 749)

CAPABILITY MACHINE
A SET OF HARDWARE-SOFTWARE MECHANISMS USED TO IMPLEMENT SECURE OR
FAULT-TOLERANT COMPUTING SYSTEMS WHICH MAY INCLUDE WELL-DEFINED RIGHTS TO
ACCESS CERTAIN RESOURCES AT VARIOUS LEVELS AND VALIDATION KEYS. THE
MECHANISMS MAY ALSO BE REFERRED TO AS CAPABILITY MONITORS OR CAPABILITY
MANAGERS.

CASE
A CASE STATEMENT IS A STATEMENT THAT TRANSFERS CONTROL TO ONE OF SEVERAL
LOCATIONS DEPENDING ON THE VALUE OF THE CONTROL EXPRESSION. ...THE "CASE"
CONSTRUCT PROVIDES A N-WAY TRANSFER OF CONTROL AND IS CONSIDERED A "GOTO"

REPLACEMENT. ONE TYPE OF CASE STATEMENT IS THE "ARITHMATIC IF" IN FORTRAN.
(SET)

CERTIFICATION
CERTIFICATION EXTENDS THE PROCESSES OF VERIFICATION AND VALIDATION TO AN
OPERATIONAL ENVIRONMENT; CONFIRMS iAT THE SYSTEM IS OPERATIONALLY
EFFECTIVE, IS CAPABLE OF SATISFYING REQUIREMENTS UNDER SPECIFIED OPERATING
CONDITIONS; AND FINALLY GUARANTEES ITS COMPLIANCE WITH REQUIREMENTS IN
WRITING. CERTIFICATION USUALLY IMPLIES THE EXISTENCE OF AN INDEPENDENT
QUALITY CONTROL GROUP FOR THE ACCEPTANCE TESTING OF THE OVERALL SYSTEM. THE
ACCEPTANCE TESTING MAY BE ACCOMPLISHED BY OPERATIONAL TESTING, LABORATORY
TESTING, AND/OR PLACING THE SYSTEM IN SIMULATED OPERATION. (SET) (2) THE
FORMAL DEMONSTRATION OF SYSTEM ACCEPTABILITY TO OBTAIN AUTHORIZATION FOR ITS
OPERATIONAL USE. (NASA)

CERTIFICATION PLAN
AN APPROVED DOCUMENT CONTAINING A PLAN TO FrOVIDE SOFTWARE CERTIFICATIONS.
(DAN 1201)

CERTIFICATION TEST
THE FORMAL DEMONSTRATION TO THE CUSTOMER OF THE TESTS DOCUMENTED IN THE
CERTIFICATION TEST PROCEDURE. (DAN 1201)

CERTIFICATION TEST PROCEDURES
A FORMAL DOCUMENT DETAILING THE ACTIONS TO BE PERFORMED AND RESULTS TO BE
OBSERVED IN VERIFYING THE CORRECT OPERATION OF A PROGRAM. (DAN 1201)

CERTIFICATION TOOLS
INFORMATION REPORTING AND SUMMARIZING COMPONENTS THAT PROVIDE A SYSTEMATIC
DATA COLLECTION AND SUMMARIZING MECHANISM THAT PRODUCES A SYSTEM STATUS
REPORT. (DAN LD-7)

CHANGE
A MODIFICATION TO DESIGN, CODE, OR DOCUMENTATION. A CHANGE MIGHT BE MADE TO
CORRECT AN ERROR, TO IMPROVE SYSTEM PERFORMANCE, TO ADD A CAPABILITY, TO
IMPROVE APPEARANCE, TO IMPLEMENT A REQUIREMENTS CHANGE, ETC., (SEL) (2) ANY
ALTERATION (ADDITION, DELETION, CORRECTION) OF THE PROGRAM CODE WHETHER IT

12

S

BE A SINGLE CHARACTER OR THOUSANDS OF LINES CF CUDE. CHANGES MALE TO IMPROVE
DOCUMENTATION OR SATISFY NEW SPECIFICATIONS ARE IMPORTANT TO RECORD ANb
STUDY, BUT ARE NOT COUNTED AS BUGS. (DAN LU-7) --COMPARE WITH MAINTENArNCE (R
WITH MODIFICATION

CHARACTER CODE
A CORRESPONDENCE BETWELN A CHARACTER SET AND A SET Or INTEGERS. (ANSI-X3-h1I)

CHARACTER SET
A SET OF GRAPHIC SYMBOLS INDEPENDENT OF FONT. A CHARACTER SET DOES NUT
INCLUDE SPECIFICATION OF CODES TO REPRESENT CHARACTERS. (ANSI-X3H1)

CHEBYSHEV'S INEQUALITY
INDEXING TERM. REFERS TO THE MATHEMATICAL METHODOLOGY USED TO CONSTRUCT, OR
WHICH IS THE FORM ASSUMED BY, A PARTICULAR MODEL.

CHIEF PROGRAMMER TEAM
A CHIEF PROGRAiMER TEAM IS A STRUCTURED TEAM OF SPECIALISTS FOR SOFTWARE
DEVELOPMENT HEADEL BY A CHIEF PROGRAMMER. SPECIALIZED ROLES FOR PEOPLE ON A
PROJECT AND THE RELATIONSHIPS AMCNG THEM ARE WELL DEFINED. THE CHIEF
PROGRAMMER TEAM HAS AS ITS CORE THREE MEMBERS: THE CHIEF PROGRAMMER, THE
BACKUP PROGRAMMER, AND THE SECRETARY/LIBRARIAN. THE THREE PERSONS PERFORM
DIFFERENT FACETS OF THE ONE JOB, SOFTWARE DEVELOPMENT. THEY FUNCTION IN
CONCERT IN JOBS THAT SUPPORT AND COMPLEMENT EACH OTHER. THE CHIEF PROGRAMMER
IS A SENIOR LEVEL PROGRAMMER WHO IS RESPONSIBLE FOR THE DETAILED DEVELOPMENT
OF THE SOFTWARE ASSIGNED TO THAT TEAM. HE PRODUCES A CRITICAL NUCLEUS CF THE
SYSTEM IN FULL AND SPECIFIES AND INTEGRATES ALL OTHER PROGRAMMING FOR THE
SYSTEM AS WELL. COORDINATION IS THE PROVINCE OF THE CHIEF PROGRAMMER ALONE,
THUS REDUCING THE NUMBER OF MINDS INVOLVED IN PROJECT COMMUNICATION BY A
FACTOR OF FIVE OR SIX. THE BACKUP PROGRAMMER IS FAMILIAR WITH ALL ASPECTS Of
THE SYSTEM AND CAN SUBSTITUTE FOR THE CHIEF PROGRAMMER WHEN NECESSARY. THE
BACKUP PROGRAMMER CONTRIBUTES SIGNIFICANT PORTIONS OF THE PROGRAMMINC EFFORT
AND, ALONG WITH THE CHIEF PROGRAMMER, READS AND CRITIQUES THE CODE OF OTHER
TEAM MEMBERS. THE SECRETARY/LIBRARIAN MAINTAINS THE STATUS OF PROGRAM AND
TEST DATA IN SUCH A FORM THAT PROGRAMMERS CAN WORK MORE EFFECTIVELY. ALL
DATA ENTRY, SOURCE AND TEST DATA UPDATING, COMPILATIONS AND TEST RUNS, AND
DOCUMENTATION COORDINATION ARE PERFORMED BY THE SECRETARY/LIBRARIAN. THE
REST OF THE TEAM CONSISTS OF PROGRAMMERS AS REQUIRED. THE TEAM IS NORMALLY
LIMITED TO LESS THAN 10 MEMBERS. (SET) (2) THIS CONCEPT IMPLIES THE USE OF A
HIGHLY STRUCTURED TEAM OF SPECIALISTS FOR SOFTWARE PRODUCTION RELYING ON
TECHNICAL PROCEDURES WHICH ARE BASED ON STRUCTURED PROGRAMMING PRINCIPLES,
AND OFFICE PROCEDURES BACKED OP WITH AUTOMATED AIDS TO SUFPORT GROUP
COMMUNICATION. SPECIALIZED ROLES FOR PEOPLE ON THE TEA,, AND THE
RELATIONSHIPS AMONG THEM, ARE WELL-DEFINED. (DAN 172)

CLARITY
CODE POSSESSES THE CHARACTERISTIC CLARITY TO THE EXTENT THAT IT IS CONCISE,
STRAIGHTFORWARD (LACK OF TRICKY, OBSCURE CODE), UNDERSTANDABLE, HAS CLEAR
CONTROL STRUCTURE, UNIFORM STYLE, SELF-CONTAINED WITH RESPECT TO
DOCUMENTATION, MAKES APPROPRIATE USE OF MACROS AND OF CHANGE LEVELS. (DAN
748)

CLERICAL
THE PROCESS OF COPYING AN ITEM FROM ONE FORMAT TO ANOTHER, OR FROM ONE

L 13

MIEDIUM TO ANOTHER, INVOLVING NO INTERPRETATION OR SEMANTIC TRANSLATION.
(SEL)

COBOL
(COMMON BUSINESS ORIENTED LANGUAGE). A PROGRAMMING LANGUAGE DESIGNED FOR
BUSINESS DATA PROCESSING. (ANSI-X3)

CODE
THE SYMBOLIC REPRESENTATION OF COMPUTER PROGRAM STATEMENTS. (NASA)

CODE AUDITING
CODE AUDITING IS THE PROCESS OF VERIFYING ADHERENCE TO PROGRAMMING
STANDARDS.

CODE INSPECTION
CODE ANALYSIS IS THE PROCESS OF VERIFYING THAT THE COMPUTER PROGRAM, AS
CODED, IS A CORRECT IMPLEMENTATION OF THE SPECIFIED DESIGN. CODE READING IS
THE VISUAL INSPECTION OF THE SOURCE CODE BY PERSONS OTHER THAN THE CREATOR
OF THE CODE. (SEL) --COMPARE WITH CODE VERIFICATION.

CODE STANDARDS AUDITOR
A COMPUTER PROGRAM USED TO AUTOMATICALLY DETERMINE WHETHER PRESCRIBED
PROGRAMMING STANDARDS AND PRACTICES HAVE BEEN FOLLOWED.

CODE VERIFICATION
THE PROCESS OF DETERMINING WHETHER THE ACTUAL CODE IS COMPLIANT WITH THE
TECHNICAL DESCRIPTION OF THE COMPUTER PROGRAM SPECIFICATION. THE ANALYSIS
PERFORMED IS VERY DETAILED AND SEEKS TO IDENTIFY ERRORS OR DISCREPANCIES
THAT STEM FROM INCONSISTENT USE OF INSTRUCTIONS, INCORRECT LOGIC FLOW,
INCOMPATIBLE INTERFACES, FAILURES TO MEET TIMING AND SIZING BUDGETS, AND/OR
INACCURACIES IN SIZING OR CALCULATIONS. (SET)

CODER
AN INDIVIDUAL MAINLY INVOLVED WITH WRITING BUT NOT DESIGNING A COMPUTER
PROGRAM. (DAN 1153)

CODING
THE GENERATION OF A SEQUENCE OF PRECISE STATEMENTS IN A FORM APPROPRIATE TO
PERMIT A COMPUTER TO PERFORM AN INTENDED FUNCTION. (NASA) (2) THE ACTIVITY
OF EXPRESSING THE STEPS OF A GIVEN ALGORITHM IN A COMPUTER LANGUAGE (OR,
PERHAPS, MORE THAN ONE LANGUAGE). A UNIT IS NOT QUALIFIED AS "CODED" UNTIL
COMPILED (OR ASSEMBLED) AND ALL SYNTAX ERRORS REMOVED. (DAN 1153)

COHESION OR MODULE STRENGTH
A RELATIVE MEASURE OF THE STRENGTH OF RELATIONSHIPS AMONG THE INTERNAL
COMPONENTS OF A MODULE INSOFAR AS THEY CONTRIBUTE TO THE VARIATION IN
ASSUMPTIONS MADE BY THE OUTSIDE PROGRAM CONCERNING THE ROLE THE MODULE PLAYS
IN THE PROGRAM. INVARIANT ASSUMPTIONS ABOUT A MODULE INDICATE HIGH STRENGTH.
(DAN 1153)

COINCIDENTAL CORRECTNESS
COINCICENTAL CORRECTNESS OCCURS WHEN A SPECIFIC TEST POINT FOLLOWS AN
INCORRECT PATH, AND YET THE OUTPUT VARIABLES COINCIDENTLY ARE THE SAME AS IF
THAT TEST POINT WERE TO FOLLOW THE CORRECT PATH. (DAN 842)

14

100

COMMAND
TO DIRECT OR TO ISSUE AN ORDER. A COMMAND IS AN ORDER OR DIRECTION.
(ANSI-X3H1)

COMMAND LANGUAGE
A SOURCE LANGUAGE CONSISTING PRIMARILY OF PROCEDURAL OPERATORS, EACH CAPABLE
OF INVOKING A FUNCTION TO BE EXECUTED. (2) THE LANGUAGE THROUGH WHICH A USER
DIRECTS A SYSTEM. (ANSI-X3iH1)

COMMAND LEVEL
A MODE IN WHICH INPUT STATEMENTS ARE ACCEPTED BY A COMMAND PROCESSOR.
(ANSI-X3HI)

COMMAND STATEMENT
A STATEMENT IN A COMMAND STATEMENT. (ANSI-X3HI)

COMMAND/CONTROL APPLICATIONS
SOFTWARE APPLICATIONS USED TO EITHER GENERATE VEHICLE COMMANDS OR TRANSMIT
THESE COMMANDS FROM THE CONTROL CENTER. (SEL)

COMMENT
A STATEMENT OR PARTIAL STATEMENT INCLUDED WITHIN A SET OF COMMAND STATEMENTS
WHICH IS NOT INTENDED FOR ANY PROCESSING BY AN OSCRL PROCESSOR OTHER THAN
POSSIBLE OUTPUT. (ANSI-X3HI)

COMMUNICATIONS SWITCHING SYSTEM
INDEXING TERM. REFERS TO THE SOFTWARE COMPONENT OF A COMMUNICATIONS
SWITCHING SYSTEM OR TO THE USE OF SOFTWARE AS A TOOL IN THE DEVELOPMENT OF A
COMMUNICATIONS SWITCHING SYSTEM.

COMMUNICATIVENESS
CODE POSSESSES THE CHARACTERISTIC COMMUNICATIVENESS TO THE EXTENT THAT IT
FACILITATES THE SPECIFICATION OF INPUTS AND PROVIDES OUTPUTS WHOSE FORM AND
CONTENT ARE EASY TO ASSIMILATE AND USEFUL. COMMUNICATIVENESS IS NEEDED FOR
TESTABILITY AND HUMAN ENGINEERING. (DAN 239)

COMPARATOR
A COMPUTER PROGRAM USED TO COMPARE TWO VERSIONS OF THE SAME COMPUTER PROGRAM
UNDEP TEST TO ESTABLISH IDENTICAL CONFIGURATION OR TO SPECIFICALLY IDENTIFY
CHANGES IN THE SOURCE CODE BETWEEN THE TWO VERSIONS. (DAN 134)

COMPATIBILITY
COMPATIBILITY IS THE MEASURE OF PORTABILITY THAT CAN BE EXPECTED OF SYSTEMS
WHEN THEY ARE MOVED FROM ONE GIVEN ENVIRONMENT TO ANOTHER. BY WAY OF
CONTRAST, PORTABILITY IS A CHARACTERISTIC OF THE SYSTEM; COMPATIBILITY IS A
RELATIONSHIP BETWEEN TWO ENVIRONMENTS. (DAN 781)

COMPETING CHARACTERISTICS
A SET OF FACTORS THAT RELATE TO THE FINAL QUALITY OF A PIECE OF SOFTWARE,
BUT THAT MAY CONFLICT OR COMPETE FOR PROJECT OR MACHINE RESOURCES. THESE MAY
BE ORDERED IN PRIORITY TO FORM IMPLEMENTATION GUIDELINES. (DAN 1153)

COMPILE
TO TRANSLATE A COMPUTER PROGRAM EXPRESSED IN A PROBLEM-ORIENTED LANGUACE

15

• ' €D

INTO A COM.PUTER-ORIENTED LANGUAGE. (ANSI-X3) (2) TO PREPARE A MACHINE
LANGUAGE PROGRA, FROM. A COMPUTLR PROGRAM WRITTEN IN ANOTHER PRLGRAM.MING
LANGUAGE BY MAKING USE OF THE OVERALL LOGIC STRUCTURE OF THE PRUGRAM, G P
GENERATING MORE THAN ONE CO;f'UTER INSTRUCTION FOR EACH SYM',BOLIC STATEMtENT,
OR BOTH, AS WELL AS PERFORMING THE FUNCTION OF AN ASSEMBLER. (ANSI-X3) (3)
TO TRANSLATE A SET OF SOURCE LANGUAGE STATEVENTS INTO A SIMPLE FORM, USUALLY
THE ASSEMBLY CODE OR MACHINE CODE OF A PARTICULAR M ACHINE. THE TRANSL.TION
IS OFTEN A ONE-TO-MANY TRANSFORMATION. (ANSI-X3HI)

COMPILER
A COMPUTER PROGRiAM USED TO COMPILE. SYr'ONOMOUS WITH COMPILING PRCCR All.
(ANSI-X3) (2) A TOOL, USED IN THE PRODUCTION OF SOFTWARE SYSTEtS, T!AT
ALLOWS PROGRAMS TO CL WRITTEN IN HIGHER-ORDER LANGUAGES. EXAMPLES INCLUDE
THE PL/I COMPILER, FORTRAN COMPILER, AND COBOL COMPILER. (DAN LD) (3) A
PROGRAM< WHICH TRANSLATES A HIGHER-ORDER LANGUAGE SOURCE PROGRAM INTO EITHER
ASSEMBLY OR MACHINE LANGUAGE. (NASA)

COMPILER-COMPILER
A SOFTWARE TOOL FOR COMPILER CONSTRUCTION. COMPILER-COMPILERS ARE USEE TO
DEVELOP NEW COMPILERS WHEN THE HIGH LEVEL SOURCE LANGUAGE IS CHANGED OR A
TOTALLY NEW SOURCE LANGUAGE IS ADOPTED.

COMPLEXITY
A MEASURE OF THE DIFFICULTY OF IMPLEMENTING A COMPONENT, INDEPEN[EMT OF THE
IMPLEMENTOR'S EXPERIENCE. EASY (OR SIMPLE) MEANS THAT ANY GOOD PROGRA.MER
CAN WRITE DOWN THE CORRECT CODE WITH LITTLE THOUGHT. HARD (OR COMPLEX" M:EANS
THAT MUCH THOUGHT IS INVOLVED IN THE DESIGN. (COMPARE THIS WITH "PRECISE";
E.G. EASY AND IMPRECISE MAY MEAN A VAGUE SPECiFICAtION, BUT ONCE THE
APPROACH IS DECIDED UPON, rHE CODE IS EASY TO WRITE.) (SEE) (2) A TERM' WHICH
CAN REFER TO ANY NUMBER OF ASPECTS OF A COMPUTER PROGRAM: THE TOPOLOGY OF
ITS CONTROL LOGIC, THE INTRICACY OF ITS DATA STRUCTURES, THE NUMBER OF
COMPUTATIONS TO REACH AN ANSWER, THE SIZE OF THE PROGRAM, THE
UNDERSTANDABILITY OF THE DOCUMENTATION, THE DEMONSTRATION EFFORT REQUIRED TO
JUDGE CORRECTNESS, THE EASE WITH WHICH REPAIRS OR CHANGES CAN BE EFFECTED,
ETC. (DAN 288) (3) CHARACTERISTICS OF A PROGRAM WHICH AFFECT COMPLEXITY
INCLUDE: INSTRUCTION MIX, DATA REFERENCE, STRUCTURE/CONTROL FLOW,
INTERACTION/INTERCONNECTION. (4) THE DEGREE OF INTERACTIONS AND DEPENDENCIES
AMONG ELEMENTS OF A COMPUTER PROGRAM. (NASA)

COMPLEXITY MEASUREMENT
(1) THE PROCESS OF QUANTIFYING THE COMPLEXITY OF A PROGRAM. (2) THE
NUMERICAL DESCRIPTION OF COMPLEXITY PRODUCED BY A MODEL OR FORMULA.

COMPLEXITY OF A PROGRAM
THE MINIMUM (CONCEPTUAL) LENGTH OF THE "PROOF OF CORRECTNESS" OF A PROGRAM,
RELATIVE TO A PARTICULAR SET OF AVAILABLE METHODS FOR PERFCRMING THE "PROOF
OF CORRECTNESS", SUCH AS FORMAL MATHEMATICAL RIGOROUS THEOREM PROVING,
INFORMAL (BUT COMPLETE) REASONING, EXHAUSTIVE TESTING, ETC. (DAN 1153)

COMPONENT
A COMPONENT IS A PIECE OF THE SYSTEM IDENTIFIED BY NAME OR COMMON FUNCTION
(E.G., SEPARATELY COMPILABLE FUNCTION, AN ENTRY IN A TREE CHART OR BASELINE
DIAGRAM FOR THE SYSTEM AT ANY POINT IN TIME, OR A SHARED SECIION OF DATA
SUCH AS A COMMON BLOCK). (SEE)

16

COMPRESSION RATIO
THE MEASURE OF THE DEGREE OF COMPRESSION OF DATA AS EXPRESSED BY THE
FRACTION: LENGTH OF ORIGINAL DATA/LENGTH OF COMPRESSED DATA. (DAN 781)

COMPUTATION ERROR/FAULT
AN ERROR/FAULT It' SOME ASSIGNMENT STATEMENT WHICH CAUSES THE WRONG FUNCTION
TO BE COMPUTED FOR ONE OR MORE OF THE OUTPUT VARIABLES EVEN THOUGH THE
SPECIFIC INPUT FOLLOWS THE COIRECT PATH. (DAN 842)

COMPUTATION STRUCTURE
AN ANALYTICAL TECHNIQUE USED TO MODEL THE DYNAMIC PERFORMANCE OF A
COMPUTATION AND THE RESOURCES NEEDED TO PERFORM THE COMPUTATION. A
COMPUTATION STRUCTURE CONSISTS OF TWO DIRECTED GRAPHS, A DATA FLOW GRAPH AND
A PRECEDENCE GRAPH. THE DATA FLOW GRAPH ILLUSTRATES THE RELATIONSHIP BETWEEN
THE STORAGE CELLS REQUIRED BY THE COMPUTATION AND THE SET OF OPERATORS WHICH
MAY BE USED TO PROCESS THE INFORMATION CONTAINED IN THE CELLS. THE
PRECEDENCE GRAPH INDICATES THE ORDER IN WHICH THESE OPERATIONS MUST BE
EXECUTED IN ORDER TO CARRY OUT A COMPUTATION. THE TECHNIQUE IS USED TO
EVALUATE THE PERFORMANCE OF DIFFERENT REALIZATIONS OF A COMPUTATION AND TO
HELP SELECT THE ONE REALIZATION WHICH OFFERS THE BEST PERFORMIANCE
CHARACTERISTICS UNDER A GIVEN COST CONSIDERATION. (DAN 1127)

COMPUTER
A COMPUTER IS A MACHINE FOR CARRYING OUT CALCULATIONS OR TRANSFORMATIONS
UNDER CONTROL OF A STORED PROGRAM...THE ABOVE DEFINITION IS A SELECTION FOR
THE SOFTWARE ENGINEERING ENVIRONMENT FROM MORE LOOSELY FORMULATED
ALTERNATIVE DEFINITIONS IN THE REFERENCE. IT APPLIES TO DIGITAL, ANALOG, AND
HYBRID COMiPUTERS. (SET)

COMPUTER ARCHITECTURE
THE SPECIFICATION OF THE RELATIONSHIPS BETWEEN THE PARTS OF A COMPUTER
SYSTEM. (ANSI-X3) (2) THE MACHINE INSTRUCTION LEVEL OF A COMPUTER (DAN 286)
(3) THE STRUCTURAL AND FUNCTIONAL DEFINITION OF A COMPUTER AS VIFWFD IN
TERMS OF ITS MACHINE INSTRUCTION SET AND INPUT/OUTPUT CAPABILITIES.(i -Pl)

COMPUTER COMMUNICATION NETWORK
INDEXING TERN. REFERS TO THE SOFTWARE COMPONENT OF A COMPUTER COMMUNICaTION
NETWORK, OR TO THE USE OF SOFTWARE AS A TOOL IN THE DEVELOPMENT OF A
COMPUTER COMMUNICATION NETWORK.

COMPUTER DATA
A REPRESENTATION OF FACTS, CONCEPTS OR INSTRUCTIONS IN A STRUCTURED
COMMUNICATION BETWEEN COMPUTER EQUIPMENT. SUCH DATA CAN BE EXTERNAL (IN
COMPUTER-READABLE FORM) OR RESIDENT WITHIN THE COMPUTER EQUIPMENT AN-D CAN BE
IN THE FORM OF ANALOG OR DIGITAL SIGNALS. (DAN 158)

COMPUTER EQUIPMENT / COMPUTER HARDWARE
DEVICES CAPABLE OF ACCEPTING AND STORING COMPUTER DATA, EXECUTING A
SYSTEMATIC SEQUENCE OF OPERATIONS ON COMPUTER DATA OR PRODUCING COMPUTER
OUTPUTS. SUCH DEVICES CAN PERFORM SUBSTANTIAL INTERPRETATION, COMPUTATION,
COMMUNICATION, CONTROL AND OTHER LOGICAL FUNCTIONS. EXAMPLES: CENTRAL
PROCESSING UNITS, TERMINALS, PRINTERS, ANALOG/DIGITAL CONVERTERS, TAPE
DRIVES, DISKS AND DRUMS. (DAN 158)

17

-. 1

COMPUTER LOADING ANALYSIS
A SOFTWARE MANAGEMENT TOOL WHICH ANALYZES REQUIRELLNTS VEPSUS CAPABILITIES
FOR CASIC PARAMETERS. TWO AVAILABLE TECHNI QUES ARE HAND ANALYSIS AND A
COMPLEX COMPUTER PROGRAM, GPSS (GENERAL PURPOSE SIMULATION SYSTEM; E.G. IMB
OR UNIVAC). (DAN 300)

COMPUTER NETWORK
(ISO) A COMPLEX CONSISTING OF TWO OR MORE INTERCONNECTED COMPLTERS.
(ANSI-X3HI)

COMPUTER PROGRAM
A COMPUTER PROGRAM IS A SERIES OF INSTRUCTIONS OR STATEMENTS IN A FORM
ACCEPTABLE TO COMPUTER EQUIPMENT DESIGNED TO CAUSE THE EQUIPMENT TO EXECUTE
AN OPERATION OR OPERATIONS. (2) AN IDENTIFIABLE SERIES OF INSTRUCTIONS, OR
STATEMENTS IN A FORM SUITABLE FOR EXECUTION BY A COMPUTER, PREPARED TO
ACHIEVE A CERTAIN RESULT. (ANSI) DRAFT STANDARD FOR COMPUTER PROGRAM
ABSTRACTS.

COMPUTER PROGRAM ABSTRACTS
A COMPUTER PROGRAM ABSTRACT IS A DESCRIPTIVE SUMMARY OF INFORMATION
CONCERNING A COMPUTER PROGRAM. A COMPUTER PROGRAM ABSTRACT IS INTENDED TO
PROVIDE SUFFICIENT INFORMATION FOR POTENTIAL USERS TO DETERMINE THE
APPROPRIATENESS OF THE COMPUTER PROGRAM TO THEIR NEEDS AND
RESOURCES.(ANSI-X3)

COMPUTER PROGRAM CERTIFICATION
COMPUTER PROGRAPM CERTIFICATION IS THE PROCESS OF CONFIRMING THAT A COMPLETE
COMPUTER PROGRAM IS OPERATIONALLY EFFECTIVE AND CAPABLE OF SATISFYING
REQUIREMENTS UNDER SPECIFIED OPERATING CONDITIONS. COMPUTER PROGRAM
CERTIFICATION USUALLY TAKES PLACE IN THE FIELD UNDER REAL CONDITIONS, AND IS
UTILIZED TO EVALUATE NOT ONLY THE SOFTWARE ITSELF, BUT ALSO THE
SPECIFICATIONS TO WHICH THE SOFTWARE WAS CONSTRUCTED. CERTIFICATION EXTENDS
THE PROCESS OF VERIFICATION AND VALIDATION TO A REAL OR SIMULATED
OPERATIONAL ENVIRONMENT. HERE THE CODE CAN BE EXERCISED TO DETERMINE WITH
SOME CONFIDENCE WHETHER OR NOT THE STATED REQUIREMENTS ARE MET. OFFICIAL
ENDORSEMENT OF THE OPERATIONAL CAPABILITY CAN THEN BE GIVEN. CERTIFICATION
INVOLVES ACCEPTANCE TESTING OF THE OVERALL SYSTEM AND IS USUALLY
ACCOMPLISHED BY OPERATIONAL TESTING, LABORATORY TESTING, AND/OR PLACING THE
SYSTEM IN SIMULATED OPERATION. (SET) (2) THE TEST AND EVALUATION OF THE
COMPLETE COMPUTER PROGRAM AIMED AT ENSURING OPERATIONAL EFFECTIVENESS AND
SUITABILITY WITH RESPECT TO MISSION REQUIREMENTS UNDER REALISTIC OPERATING
CONDITIONS. (DAN 134)

COMPUTER PROGRAM DEVELOPMENT PLAN (CPDP)
A MANAGEMENT PLAN. AIR FORCE REGULATION 800-14 DICTATES THAT CUMPUTER
PROGRAMS SHALL BE PLANNED, ANALYZED, DESIGNED, CODED, CHECKED, INTEGRATED,
TESTED, AND DELIVERED IN ACCORDANCE WITH A CPDP. (DAN 356)

COMPUTER PROGRAM VALIDATION
THE TEST AND EVALUATION OF THE COMPLETE COMPUTER PROGRAM AIMED AT ENSURING
COMPLIANCE WITH THE FUNCTION, PERFORMANCE, AND INTERFACE REQUIREMENTS. THE
TESTS INCLUDE SYSTEM TESTS, SUBSYSTEM TESTS, AND INTEGRATION TESTS. THE
AMOUNT OF TESTING DEPENDS UPON BOTH THE THOROUGHNESS 6F THE SPECIFICATION
DOCUMENT AND THE PARTICULAR VALIDATION PROCEDURES EMPLOYED. (SET)

18

COMPUTER PROGRAM VERIFICATION
THE TEST AND EVALUATION OF THE COMPLETE COMPUTER PROGRAM AIMED AT ENSURING
OPERATIONAL EFFECTIVENESS AND SUITABILITY WITH RESPECT TO PROJECT
REQUIREMENTS UNDER REALISTIC OPERATING CONDITIONS. (2) COMPUTER PROGRAM
VERIFICATION IS THE ITERATIVE PROCESS OF DETERMINING WHETHER OR NOT THE
PRODUCT OF EACH STEP OF THE COMPUTER PROGRAP, ACQUISITION PROCESS FULFILLS
ALL REQUIREMENTS LEVIED BY THE PREVIOUS STEP. THESE STEPS ARE SYSTEM
SPECIFICATION VERIFICATION, REQUIREMENTS VERIFICATION, SPECIFICATION
VERIFICATION, AND CODE VERIFICATION. VERIFICATION IS THE GENERIC PROCESS
ENCOMPASSING THE FOUR ACTIVITIES DESCRIBED BELOW. SYSTEM SPECIFICATION
VERIFICATION: SYSTEM SPECIFICATION VERIFICATION (SYSVER) IS TI:E PROCESS OF
DETERMING WHETHER THE STATED MISSION REQUIREMENTS HAVE BEEN CLEARLY AND
CORRECTLY TRANSLATED INTO AN ACHIEVABLE NEXT LOWER LEVEL OF SPECIFICATION.
DETAILED REQUIREMENTS ANALYSES ARE CONDUCTED TO CRITICALLY EVALUATE PROPOSED
CONCEPTUAL APPROACHES TO SYSTEM MECHANIZATION. PRELIMINARY SYSTEM AND
SUBSYSTEM RELATIONSHIPS ARE REVIEWED TO IDENTIFY SATISFACTION OF APPROPRIATE
PERFORMANCE, FUNCTIONAL, AND OPERATIONAL REQUIREMENTS. REQUIREMENTS ARE
SEGMENTED IN SUFFICIENT DETAIL TO DETERMINE IF THE IDENTIFIED DESIGN
APPROACHES CAN FULLY REALIZE THEM. THE PRIMARY OBJECTIVE OF SYSVER IS TO
REDUCE THE RISK ASSOCIATED WITH SYSTEM ACQUISITION BY PROVIDING THE ANALYSIS
AND REVIEW NECESSARY TO ENSURE VIABILITY. SYSVER IS USALLY ACCOMPLISHED
PRIOR TO CONTRACT AWARD AND DURING THE ONSET OF CONTRACT PERFORMANCE.
BECAUSE OF THE ROLE SOFTWARE PLAYS, CRITICAL ANALYSES AND SIMULATION OF KEY
MODULES USUALLY ARE NECESSARY .. -REQUIREMENTS VERIFICATION: REQUIREMENTS
VERIFICATION (REQVER) IS THE PROCESS OF DETERMINING WHETHER OR NOT THE
COMPUTER PROGRAM REQUIREMENTS REFLECT THE COMPUTER-APPLICABLE PORTION OF THE
SYSTEM SPECIFICATION. ITS PRIMARY PURPOSE IS TO IDENTIFY AMBIGUOUS,
ILL-DEFINED, AND INADEQUATE COMPUTER REQUIREMENTS EARLY IN THE ACQUISITION
CYCLE. REQVER SEEKS TO DETERMINE IF THE CONCEPTUAL DESIGN WILL WORK. ITS
INTENT IS TO VERIFY THAT EACH REQUIREMENT STATED IN SYSTEM SPECIFICATION IS
CLEARLY TRANSLATED INTO SUBSYSTEM REQUIREMENTS THAT CAN BE MECHANIZED.
SIMULATIONS, DOCUMENT RESEARCH, AND ANALYSIS ARE THE TECHNIQUES PRESENTLY
ASSOCIATED WITH REQVER. ... SPECIFICATION VERIFICATION: SPECIFICATION
VERIFICATION (SPECVER) IS THE PROCESS OF DETERMINING WHETHER OR NOT THE
DESIGN SPECIFICATION FOR THE INDIVIDUAL COMPUTER PROGRAM MODULES REPRESENTS
A CLEAR CONSISTENT, AND ACCURATE TRANSLATION OF THE COMPUTER PROGRAN,
REQUIREMENTS. SPECVER IS CONCERNED WITH DETERMINING IF THE RECOMMENDED
DESIGN ACTUALLY WILL DO THE JOB. IT DOESN'T SEEK TO REDESIGN, BUT RATHER TO
IDENTIFY INADEQUACIES. TYPICALLY, THE ACTIVITIES ASSOCIATED WITH SPELVER ARE
DOCUMENT ANALYSIS, INDEPENDENT SIMULATION, MODEL AND LOGIC ANALYSIS AND
REDERIVATION OF KEY ALGORITHMS. ...CODE VERIFICATION: CODE VERIFICATION
(CODEVER) IS THE PROCESS OF DETERMINING WHETHER OR NOT THE ACTUAL CODE IS
COMPLIANT WITH THE TECHNICAL DESCRIPTION OF THE COMPUTER PROGRAM
SPECIFICATION. THE ANALYSIS PERFORMED IS VERY DETAILED AND SEEKS TO IDENTIFY
ERRORS OR DISCREPANCIES THAT STEM FROM INCONSISTENT USE OF INSTRUCTIONS,
INCORRECT LOGIC FLOW, INCOMPATIBLE INTERFACES, FAILURES TO MEET TIMING AND
SIZING BUDGETS, AND/OR INACCURACIES IN SCALING OR CALCULATIONS. (SET)

COMPUTER RESOURCES
THE TOTALITY OF AVAILABLE AND USEFUL COMPUTER EQUIPMENT, PROGRAMS,
DOCUMENTATION, SERVICES, SUPPLIES AND PERSONNEL. (NASA) (2) THE TOTAL OF
COMPUTER CAPABILITIES, MEMORY, AND MASS STORAGE. (DAN 1201) (3) IN AN
ALLOCATION SENSE "RESOURCES" MORE SPECIFICALLY IS ORIENTED TO AVAILABLE
MEMORY AND ALLOWABLE RUNNING TIME TO ACCOMPLISH A SPECIFIC JOB OR PROJECT.

19

1100,

COMPUTER SOFTWARE
A COMBINATION OF ASSOCIATED COMPUTER PROGRAMS AND DATA REQUIRED TO COMMAND
THE COMPUTER EQUIPMENT TO PERFORM COMPUTATIONAL OR CONTROL FUNCTIONS. DAN
158) (2) THE TERMS SOFTWARE AND COMPUTER SOFTWARE ARE USED INTERCIIANGEABLY.
(SET) (3) IN A MORE DIRECT ALLOCATION SENSE "RESOURCES" MORE SPECIFICALLY
ARE

COMPUTER SYSTEM
A COMPUTER SYSTEM IS AN INTERACTING COLLECTION OF COMPUTER EQUIPMENT,
COMPUTER PROGRAMS, AND COMPUTER DATA. (SET)

COMPUTER TIME
FOR BATCH USAGE, THIS IS THE BILLABLE TIME FOR ALL RUNS. FOR INTERACTIVE
USAGE, IT IS THE NUMBER OF HOURS SPENT AT A TERMINAL.(SEL) CONTRAST WITH
EXECUTION TIME. (2) COMPUTER TIME IN SIMULATION, THE TIME REQUIRED TO
PROCESS THE DATA THAT REPRESENTS A PROCESS OR THAT REPRESENTS A PART OF A
PROCESS. (ANSI X-3)

COMPUTER TURNAROUND TIME
THE TIME DIFFERENTIAL LETWEEN THE SUBMITTAL OF A JOE TO THE COMPUTER CENTER
AND THE RETURN OF THE JOE RESULTS TO THE PROGRAMMER. (DAN 137)

CONCISENESS
CODE POSSESSES THE CHARACTERISTIC CONCISENESS TO THE EXTENT THAT EXCESSIVE
INFORMATION IS NOT PRESENT. THIS IMPLIES THAT PROGRAMS ARE NOT EXCESSIVELY
FRAGMENTED INTO MODULES, OVERLAYS, FUNCTIONS, AND SUBROUTINES, NOR THAT THE
SAME SEQUENCE OF CODE IS REPEATED IN NUMEROUS PLACES, RATHER THAN DEFINING A
SUBROUTINE OR MACRO,ETC (DAN239)

CONCURRENT
CONCURRENT PERTAINS TO THE OCCURRENCE IN PARALLEL OF TWO OR MORE EVENTS OR
ACTIVITIES WITHIN THE SAME SPECIFIED INTERVAL OF TIME...CONCURRENCY IN
SOFTWARE DEVELOPMENT IS AN ISSUE, BECAUSE IT DOES OFFER THE POTENTIAL FOR
DECREASING THE DURATION OF A DEVELOPMENT PROJECT. HOWEVER, IT ALSO PRESENTS
THE PROBLEMS ASSOCIATED WITH MANY SIMULTANEOUS ACTIVITIES. THESE PROBLEMS
INCLUDE MORE INTERFACE REQUIREMENTS, COORDINATION OF MULTIPLE TASKS, AND
INTERTASK DEPENDENCIES. ONE EXAMPLE WOULD BE TO HAVE THE DESIGN AND CODING
TASKS COMPLETED IN PARALLEL. (SET). (2) OPERATING OR OCCURRING AT THE SAME
TIME. RUNNING IN PARALLEL. (ANSI-X3H1)

CONCURRENT PASCAL
AN EXTENSION OF PASCAL DESIGNED SPECIFICALLY FOR THE DESIGN AND
IMPLEMENTATION OF MULTI-PROGRAMMING OPERATING SYSTEMS. (DAN 389)

CONCURRENT PROCESSES
PROCESSES MAY EXECUTE IN PARALLEL ON MULTIPLE PROCESSORS OR ASYNCHRONOUSLY
ON A SINGLE PROCESSOR. CONCURRENT PROCESSES MAY INTERACT WITH EACH OTHER
DURING EXECUTION. INDIVIDUAL PROCESSES WITHIN A COLLECTION OF CONCURRENT
PROCESSES MAY SUSPEND THEIR EXECUTION PENDING RECEIPT OF INFORMATION FROM
ANOTHER OF THE PROCESSES. (ABBOTT)

CONCURRENT PRODUCTION PRINCIPLE
A METHOD IN WHICH THE FORMAL PRODUCTION OF SOFTWARE PROCEEDS WITH CONCURRENT
ACTIVITIES AMONG LESIGN, CODING, TESTING, AND DOCUMENTATION. (DAN lb)

20

CONCURRENT PROGRAMMING
IN CONCURRENT PROGRAMMING, PROCESSES MAY INTERACT BY COMMUNICATION OF DATA
AND SYNCHRONIZATION OF ACTIONS. (DAN 273)

CONDITION VARIABLES
MONITORS WHICH GOVERN QUEUES HAVE LOCAL CONDITION VARIABLES WITH ASSOCIATED
WAIT AND SIGNAL OPERATIONS. A PROCESS MAY BE DLLAYED WITHIN A NCNITOR
PROCEDURE UNTIL SOME CONDITION BECOMES TRUE.

CONDITIONAL CONTROL STRUCTURE
IN PROGRAMMING THIS STRUCTURE ALLOWS ALTERNATE BRANCHING OF PROGRAM FLOW
DEPENDING UPON THE FULFILLMENT OF SPECIFIED CONDITIONS. IN MOST LANGUAGES IT
GENERALLY FITS THE FORMAT IF...THEN.-..ELSE

CONDITIONAL JUMP
A CONDITIONAL JUMP IS THE TRANSFER OF THE COMMAND SEQUENCE, PROVIDED
SPECIFIED CRITERIA ARE MET.(SET)

CONFIDENCE LEVEL
PERCENT PROBABILITY THAT A GIVEN NUMBER IS CORRECT. 100% MEANS THAT THE
NUMBER IS KNOWN TO BE CORRECT WITH ABSOLUTE CERTAINTY; 0% MEANS THAT THE
NUMBER MUST BE INCORRECT. (AN OUTPUT OF SOME RELIABILITY AND ERROR MODELS)
(SEL) (2) THE PROBABILITY THAT A GIVEN STATEMENT CONCERNING A SET OF RANDOM
VARIABLES OR A SEGMENT OF A RANDOM PROCESS WILL BE UPHELD, IF TESTED. (DAN
1153)

CONFIGURATION
THE COLLECTION OF INTERCONNECTED OBJECTS WHICH MAKE UP A SYSTEM OR
SUBSYSTEM. (ANSI-X3HZ) (2) THE TOTAL SOFTWARE MODULES IN A SOFTWARE SYSTEM
OR HARDWARE DEVICES IN A HARDWARE SYSTEM AND THEIR INTERRELATIONSHIPS. (DAN
1201)

CONFIGURATION CONTROL
A METHODOLOGY CONCERNED WITH PROCEDURES FOR CONTROLLING THE CONTENTS OF A
SOFTWARE SYSTEM. A WAY OF MONITORING THE STATUS OF SYSTEM COMPONENTS,
PRESERVING THE INTEGRITY OF RELEASED AND DEVELOPING VERSIONS OF A SOFTWARE
SYSTEM, AND CONTROLLING THE EFFECTS OF CHANGES THROUGHOUT THE SYSTEM. (DAN
LD7) (2) A PROCESS BY WHICH A CONFIGURATION ITEM IS BASELINEC, AND
THEREAFTER, ONLY CHANGEABLE BY APPROVAL BY A CONTROLLING AGENCY. (DAN 1201)

CONFIGURATION MANAGEMENT
CONFIGURATION MANAGEMENT INVOLVES THE SYSTEMATIC AND DISCIPLINED APPLICATION
OF THE PRINCIPLES OF GOOD TECHNICAL AND ADMINISTRATIVE PRACTICES TO ENSURE
THAT ALL REQUIREMENTS ARE IDENTIFIED, EVALUATED, TRANSFORMED INTO AND
MAINTAINED AS HARDWARE CONFIGURATION ITEMS AND SOFTWARE CONFIGURATION ITEMS.
IT IS THE FUNCTION OF CONFIGURATION MANAGEMENT TO PROVIDE THE FRAMEWORK FOR
TECHNICAL CONTROL AND STATUS ACCOUNTING DURING CONFIGURATION ITEM
ACQUISITION OR MODIFICATION TO BEST DIRECT MAINTENANCE EFFORT AND TO
MINIMIZE IMPACT OF MAINTENANCE AND TESTING ON OPERATIONAL SERVICE. (DAN 223)
(2) ALL ACTIVITIES RELATED TO CONTROLLING THE CONTENTS OF A SOFTWARE SYSTEM.
IT MONITORS THE STATUS OF SYSTEM COMPONENTS, PRESERVES THE INTEGRITY OF
RELEASED AND DEVELOPING VERSIONS (F A SYSTEM, ANb CONTROLS THE EFFECTS OF
CHANGES THROUGHOT THli SYSTEM. IT IS A PROCESS DEALING AS MUCH WITH
PPOC[LURES AS WITH TO()'L. (DAN I[L/) (3) A [IS(.lILINL APPLYING TECHNICAL AND

ADMINISTRATIVE DIRECTION AND SURVEILLANCE TO IDENTIFY AND DOCUMENT A
CONFIGURATION ITEM, TO CONTROL CHANGES TO IT, AND TO REPORT STATUS OF CHANGE
PROCESSING AND IMPLEMENTATION. (DAN 1201)

CONFINEMENT
THE PROCESS OF ENSURING THAT WHILE ACCESSING A FILE THROUGH A FILE SYSTEM,
NO INFORMATION FROM THE FILE WILL BE TRANSMITTED TO THE OUTSIDE WORLD
(UNPRIVILEDGED USERS). (DAN 278)

CONNECTIONS, CONNECTIVITY
THE SET OF ASSUMPTIGNS THE REST OF A PROGRAM MAKES ABOUT A MODULE (OR OTHER
PROGRAM SEGMENT). MODULES HAVE CONNECTIONS IN CONTROL, IN DATA, AND IN
SERVICES (FUNCTIONS) PERFORMED. CONNECTIVITY INCREASES WITH THE NUMBER,
TYPE, AND VARIABILITY OF SUCH ASSUMPTIONS. (DAN 1153)

CONSISTENCY
THE STRICT AND UNIFORM ADHERENCE TO PRESCRIBED SYMBOLS, NOTATION,
TERMINOLOGY, AND CONVENTIONS WHICH TENDS TO FOSTER A QUALITY SOFTWARE
PRODUCT. (NASA) (2) A PROGRAM QUALITY WHICH ASSURES THAT THE RESULTS OF
EXECUTING A PROGRAM ARE REPEATABLE IN A PRACTICAL SENSE, IN SPITE OF ANY
LOGICAL ERRORS WHICH MAY BE PRESENT IN THE PROGRAM. (DAN 1153)

CONSISTENCY CHECKER
A COMPUTER PROGRAYM USED TO DETERMINE (1) IF REQUIREMENTS AND/OR DESIGNS
SPECIFIED FOR COMPUTER PROGRAMS ARE CONSISTENT WITH EACH OTHER AND (2) IF
THEY ARE COMPLETE.

CONSISTENT
A COMPUTER PROGRAM IS INTERNALLY CONSISTENT TO THE EXTENT TI:AT IT CONTAINS
UNIFORM NOTATION, TERMINOLOGY, AND SYMBOLOGY WITHIN ITSELF, AND IS
EXTERNALLY CONSISTENT TO THE EXTENT THAT ITS FUNCTIONS APE DIRECTLY
RELATABLE TO THE REQUIREMENTS...SOME TESTS OF INTERNAL CONSISTENCY ARE: (A)
CODING STANDARDS HOMOGENEOUSLY AbHERED TO: E.G., COMMENTS SHOULD NOT BE
UNNECESSARILY EXTENSIVE OR WORDY AT ONE PLACE AND INSUFFICIFNTLY INFORMATIVE
IN ANOTHER. IRREGULAR USE OF UNEXPECTED OR NON-STANDARD CONSTRUCTIONS SHOULD
BE AVOIDED; E.G., ABS(X) RATHER THAT AMAXI (X,O.) - AMINI (X,O). (E) NAMES
OF VARIABLES UNIQUE (IF RENAMED, THEN A CONSISTENT RELATIONSHIP SHOULD BE
FOLLOWED). FOR EXAMPLE, USE PREFIX CHARACTER X- TO CONVERT INTEGER TO
FLOATING-POINT REPRESENTATION (XNAME=NAME). (C) NUMBER OF ARGUMENTS IN
SUBROUTINE CALLS MATCH WITH SUBROUTINE HEADER. (D) SINGLE, DOUBLE, OR
MULTIPLE PRECISION REPRESENTATION USED CONSISTENTLY. TOLERANCES CONSISTENT
WITH NUMBER OF SIGNIFICANT DIGITS IN INPUTS AND OUTPUTS. SOME TESTS OF
EXTERNAL CONSISTENCY ARE: (A) EACH TEST DESCRIBED IN THE TEST PLAN IS
DIRECTLY RELATABLE TO PROGRAM SPECIFICATION AND/OR REQUIREMENTS. (B) THERE
IS A ONE TO ONE RELATIONSHIP BETWEEN FUNCTIONAL FLOW CHART ENTITIES AS
DESCRIBED IN THE DETAILED DESIGN SPECIFICATION TO CODED ROUTINES OR MODULES
OF A COMPUTER PROGRAM. (C) VARIABLE NAMES AND DEFINITIONS IN COMPUTER
PROGRAM CODE, INCLUDING PHYSICAL UNITS, ARE CONSISTENT WITH GLOSSARY. (SET)

CONSTANTS AUTO CHECKER
A COMPUTER PROGRAM USED TO SEARCH A TAPE FOR ALL CONSTANTS AND PARAMETERS TO
IDENTIFY THE NAME OF THE CONSTANT,ITS STORAGE LOCATION, AND THE BINARY SCALE
FACTOR. THESE ARE THEN COMPARED WITH SPECIFICATION VALUES TO ASSURE
CGMPLIANCE. (DAN 134)

22

.l~.3

2 I

CONSTRAINT
CONSTRAINTS RESTRICTIONS ON RESOURCE AVAILABILITY IMPOSED BY
SPECIFICATIONS. SPACE CONSTRAINTS - ALL RESTRICTIONS OWING TO SPACE
PROBLEMS, E.C., MAXIMUM NUMBER OF WORDS THAT COMPONENT MAY OCCUPY AT ONE
TIME, MAXIMUM DISK SPACE AVAILABLE DURING EXECUTION TIME OR FOR PROGRAM
STORAGE, ETC.. TIME CONSTRAINTS - ALL RESTRICTIONS OWING TO VARIOUS MACHINE
AND CALENDAR TIME PROBLEMS, E.G., MAXIMUM EXECUTION TIME FOR COMPONENT TO
PROCESS AND RESPOND TO SOME INPUT CONDITION, TIME TO COMPLETE A COMPONENT OR
MILESTONE,ETC. (SEE)

CONTROL
A MAJOR SUB-DIVISION WITHIN CONFIGURATION MANAGEMENT. THE PROCEDURES BY
WHICH CHANGES TO THE DESIGN REQUIREMENTS ARE PROPOSED AND FORMALLY
PROCESSED. (DAN LD7).

CONTROL DATA
DATA THAT SELECTS AN OPERATING MODE OR SUBMODE IN A PROGRAM, DIRECTS THE
SEQUENTIAL FLOW, OR OTHERWISE DIRECTLY INFLUENCES THE FUNCTION OF A PROGRAM.
(DAN 1153)

CONTROL LOGIC
THE TOPOLOGICAL CONNECTIVITY AND THE SET OF CONDITIONS THAT TOGETHER GOVERN
THE APPARENT SEQUENCING OF OPERATIONS WITHIN A PROCESS (OR AMONG CONCURRENT
PROCESSES). CONTROL LOGIC IS OFTEN DISPLAYED BY MEANS OF A FLOWCHART. (DAN
1153)

CONTROL SEGMENT
A COLLECTION OF OPERATIONS AND OTHER CONTROL SEGMENTS ORGANIZED ACCORDING TO
A SINGLE CONTROL STRUCTURE. THE PARTICULAR OPERATIONS SELECTED FROM A
CONTROL SEGMENT AND THE ORDER OF THEIR PERFORMANCE DURING THE EXECUTION OF A
CONTROL SEGMENT MAY BE DETERMINED COMPLETELY FROM THE INFORMATION AVAILABLE
IN THE CONTROL SEGMENT AND THE DATA OBJECTS TO WHICH THE CONTROL SEGMENT IS
APPLIED. THIS PROPERTY OF CONTROL SEGMENTS IS THE PROPERTY OF HAVING A
SINGLE ENTRY. ON COMPLETION OF EXECUTION OF A CONTROL SEGMENT, NO EXECUTION
REQUIREMENTS ARE LEFT PENDING OR INCOMPLETE. THERE ARE NO SPECIFICATIONS
WITHIN A CONTROL SEGMENT INDICATING WHICH OTHER CONTROL SEGMENTS ARE TO BE
EXECUTED AFTERWARDS. THIS PROPERTY OF CONTROL SEGMENTS IS THE PROPERTY OF
HAVING A SINGLE EXIT. (ABBOTT)

CONTROL STATEMENTS
ALL STATEMENTS THAT POTENTIALLY ALTER THE SEQUENCE OF EXECUTED INSTRUCTIONS
(E.G., GOTO, IF, RETURN, DO). (SEL) (2) COMPARE WITH CurTPOL STRUCTURES. (3)
A STATEMENT IN A PROGRAMMING LANGUAGE WHICH, WHEN EXECUfLo, AFFECTS THE
ORDER IN WHICH (OTHER) OPERATIONS ARE EXECUTED. NOT ALL CONTROL STATEMENTS
DEFINE CONTROL STRUCTURES. (ABBOTT)

CONTROL STRUCTURES
CONTROL STRUCTURES ARE THE LOGICAL EXPRESSIONS THAT DETERMINE THE FLOW OF
CONTROL THROUGH A COMPUTER PROGRAM... STRUCTURED PROGRAMMING RESTRICTS FLOW
OF CONTROL CONSTRUCTS TO SIMPLE STRUCTURES AND AVOIDS TRANSFERS OF CONTROL
THAT CREATE FLOW COMPLEXITIES (I.E., EXCESSIVE GOTO STATEMENTS). SET) (2) AN
ORGANIZATION USED TO BUILD A CONTROL SEGMENT. A CONTROL STRUCTURE RELATES
TWO OR MORE OPERATIONS OR CONTROL SEGMENTS WITHIN AN ALGORITHM. A CONTROL
STRUCTURE PROVIDES THE FRAMEWORK TO DETERMINE: 1) WHETHER ITS COMPONENT

23

OPERATIONS AND CONTROL SEGMENTS WILL BE PERFORMED; AND 2) THE ORDER IN WHICH
THEY WILL BE PERFORMED DURING EXECUTION OF AN ALGORITHIM. (ABBOTT)

CONVENTION
AN AGREED METHOD, FORM OF PRESENTATION TO PROVIDE CONSISTENCY AND
UNDERSTANDING TO DELIVERABLE SOFTWARE ELEMENTS. (DAN 1201)

CONVERSION AIDS
THOSE SOFTWARE TOOLS WHICH ASSIST IN CONVERTING OPERATIONAL SOFTWARE FROM
ONE COMPILER TO ANOTHER. THESE TOOLS ANALYZE THE SOURCE CODE AS WRITTEN FOR
ONE COMPILER AND HIGHLIGHT THOSE STATEMENTS WHICH ARE NOT COMPATIBLE WITH
THE CAPABILITIES OF THE TARGET COMPILER. IN SOME INSTANCES THESE CONVERSION
AIDS WILL REPLACE THE INCOMPATIBLE STATEMENTS WITH ONE OR MORE TARGET
COMPILER STATEMENTS WHICH ARE DESIGNED TO ACHIEVE THE SAME RESULT. (DAN 142)

CONVERSION COST FACTORS
SPECIFIC INFORMATION CONCERNING ONE OR MORE COST FACTORS INCURRED DURING A
SOFTWARE CONVERSION. (DAN 786)

CONVERSION COSTS
COSTS RELATED TO OR INCURRED DURING A SOFTWARE CONVERSION EFFORT.(DAN 786)

CONVERSIONS
THIS TERM REFERS TO THE CONVERSION OF EXISTING SOFTWARE FROM ONE LANGUAGE TO
ANOTHER LANGUAGE OR FROM ONE HARDWARE/SOFTWARE CONFIGURATION TO ANOTHER.
(DAN 786)

COPY
(ISO) TO READ DATA FROM A SOURCE, LEAVING THE SOURCE DATA UNCHANGED, AND To
WRITE THE SAME DATA ELSEWHERE IN A PHYSICAL FORM THAT MAY DIFFER FROM THAT
OF THE SOURCE. A COPY DIFFERS FROM A MOVE IN THAT IT PRESERVES THE SOURCE
UNCHANGED. (ANSI-X3H1)

COROUTINES
COROUTINES ARE TWO COMPUTER PROGRAMS WHICH CAN CALL ON EACH
OTHER...SUBROUTINES ARE SPECIAL CASES OF MORE GENERAL PROGRAM COMPONENTS
CALLED COROUTINES. IN CONTRAST TO THE SUBORDINATE RELATIONSHIP OF A
SUBROUTINE TO A MAIN ROUTINE, THERE IS COMPLETE SYMMETRY BETWEEN COROUTINES
WHICH CALL ON EACH OTHER. IT IS NOT NECESSARY THAT EACH CALL RESULTS IN THE
COMPLETE EXECUTION OF THE OTHER.(SET)

CORRECTION
A CHANGE MADE TO CORRECT AN ERROR. (SEL)

CORRECTIVE MAINTENANCE
MAINTENANCE SPECIFICALLY INTENDED TO ELIMINATE AN EXISTING FAULT... CONTRAST
WITH PREVENTIVE MAINTENANCE. (ANSI-X3)

CORRECTIVE MAINTENANCE TIME
TIME, EITHER SCHEDULED OR UNSCHEDULED, USED TO PERFORM CORRECTIVE
MAINTENANCE. (ANSI-X3)

CORRECTNESS
AGREEMENT BETWEEN A PROGRAM'S TOTAL RESPONSE AND THE STATED RESPONSE IN THE

24

-I . .

FUNCTIONAL SPECIFICATION (FUNCTIONAL CORRECTNESS), AND/OR BETWEEN THE
PROGRAM AS CODED AND THE PRCGRAMMING SPECIFICATION (ALGORITHMIC
CORRECTNESS). (DAN 1153)

CORRECTNESS PROOFS
PROOF THAT A PROGRAM PRODUCES CORRECT RESULTS FOR ALL POSSIBLE INPUTS.
VALIDATION OF A PROGRAM IN THE SAME WAY A MATHEMATICAL THEOREM IS PROVED
CORRECT. I.E., BY MATHEMATICAL ANALYSIS OF ITS PROPERTIES. (CAN LD7) (2) AN
ALTERNATIVE TO EXECUTING TESTS OF SOFTWARE TO DEMONSTRATE ITS CORRECTNESS IS
THE METHOD OF ANALYTIC PROOFS. THE VERIFICATION PROCESS CONSISTS OF MAKING
ASSERTIONS DESCRIBING THE STATE OF A PROGRAM INITIALLY, AT INTERMEDIATE
POINTS IN THE PROGRAM FLOW, AND AT TERMINATION, AND THEN PROVING THAT EACH
ASSERTION IS IMPLIED BY THE INITIAL OR PRIOR ASSERTION AND ALSO BY THE
TRANSFORMATIONS PERFORMED BY THE PROGRAM BETWEEN EACH TWO CONSECUTIVE
ASSERTIONS. AN ASSERTION CONSISTS OF A DEFINITION OF THE RELATIONSHIPS AMONG
THE VARIABLES AT THE POINT IN THE PROGRAM WHERE THE ASSERTION IS MADE. THE
PROOFS EMPLOY STANDARD TECHNIQUES FOR PROVING THEOREMS IN THE FIRST ORDER
PREDICATE CALCULUS. PROOF OF THE CORRECTNESS OF A "ROGRAM USING THIS
APPROACH OBVIATES THE NEED FOR EXECUTING TEST CASES, SINCE ALL POSSIBILITIES
ARE COVERED BY THE PROOFS. (DAN 172) (3) THE TECHNIQUE OF PROVING
MATHEMATICALLY THAT A GIVEN PROGRAM IS CONSISTENT WITH A GIVEN SET OF
SPECIFICATIONS. THIS PROCESS CAN BE ACCOMPLISHED BY MANUAL METHODS OR BY
PROGRAM VERIFIERS REQUIRING MANUAL INTERVENTION. (DAN 154) (4) AUTOMATED
VERIFICATION SYSTEMS EXIST WHICH ALLOW THE ANALYST TO PROVE SMALL PROGRAMS
ARE CORRECT BY MEANS SIMILAR TO THOSE USED IN PROVING MATHEMATICAL THEOREMS.
AXIOMS AND THEOREMS DERIVED ARE USED TO ESTABLISH VALIDITY OF PROGRAM
ASSERTIONS AND TO PROVIDE A FUNDAMENTAL UNDERSTANDING OF HOW THE PROGRAM
OPERATES. (DAN 134)

COSMETIC
CHANGES IN THE SOURCE PROGRAM THAT HAVE LITTLE EFFECT ON THE PERFORMANCE OF
PROGRAM. (E.G., CORRECT COMMENTS, MOVE CODE AROUND AS LONG AS IT DOES NOT
ALTER THE ALGORITHM IMPLEMENTED, CHANGE THE NAME OF A LOCAL VARIABLE, ETC.
(SEL)

COST AND SCHEDULE CONTROL
INDEXING TERM. REFERS TO MANAGEMENT TOOLS AND/OR TECHNIQUES WHICH CAN BE
USED TO EFFECT COST AND SCHEDULE CONTROL.

COST DATA
DATA DESCRIBING THE COSTS ASSOCIATED WITH THE RESOURCES EXPENDED BY A SO
FTWARE PROJECT. (DAN 137)

COST EFFECTIVE
A TERM WHICH DESCRIBES SOME METHOD, TOOL OR TLCHNIQUE THAT REDUCES THE
PREDICTED COST TO PERFORM ON A CONTRACTED ITEM. (DAN 1201)

COST ESTIMATION
A STANDARD TECHNIQUE FOR ESTIMATING THE AMOUNT OF LABOR NECESSARY FOR THE
COMPLETION OF A TASK, THE AMOUNT AND POTENTIAL COSTS OF COMPUTER TIME
REQUIRED, ETC., PRIOR TO AND DURING A PROJECT'S LIFETIME. (DAN L07)

COST FACTORS
IDENTIFIED PARAMETERS, CONSTRAINTS OR SYSTEM CHARACTERISTICS WHICH AFFECT

25

A-

THE MAGNITUDE OR DISTRIBUTION OF COSTS DURING THE SOFTWARE LIFE CYCLE. (DAN
772)

COST MANAGEMENT
A COLLECTED SET OF TOOLS THAT PROVILE THE CRITERIA AND DEVICES FOR TRACING
PROJECT COSTS. (DAN LD7)

COSTING TECHNIQUES
METHODS FOR DETERMINING THE COST OF DEVELOPING A SYSTEM OR ANY PARTICULAR
PART OF A SYSTEM.

COST-BENEFIT ANALYSIS
COST-BENEFIT ANALYSIS SEEKS TO ESTIMATE AND COMPARE THE COSTS AND BENEFITS
OF AN UNDERTAKING. IT CAN BE USED IN ANY OR ALL OF THREE WAYS: (1) AS A
PLANNING TOOL FOR ASSISTANCE IN CHOOSING AMONG ALTERNATIVES AND ALLOCATING
(SCARCE) RESOURCES AMONG COMPETING DEMANDS, (2) AS AN AUDITING TOOL FOR
PERFORMING POST HOC EVALUATIONS OR FOLLOW-UP STUDIES OF AN EXISTING PROJECT;
(3) AS A WAY TO DEVELOP "QUANTITATIVE" SUPPORT IN ORDER TO POLITICALLY
INFLUENCE A DECISION. (4) AS A METRIC TO ESTIMATE EFFECTIVENESS OF A
PROPOSED SOFTWARE TOOL OR TO COMPARE PROPOSED OR EXISTING SOFTWARE TOOLS FOR
A GIVEN PROJECT. (DAN 415)

COSTS
SEE COSTING TECHNIQUES, COST AND SCHEDULE CONTROL, COST ESTIMATING, ERROR
CORRECTION COSTS.

CREATE
THE CREATION OF THE IDEA AND THE RECORDING OF IT. (SEL)

CREATION DATE
DATE COMPONENT WAS FIRST NAMvED (E.G., DATE IT FIRST APPEARED ON A TREE
CHART). (SEL)

CRISP
(CONTROL-RESTRICTIVE INSTRUCTIONS FOR STRUCTURED PROGRAMMING) A SET OF
KEYWORDS USED TO INTRODUCE STRUCTURED CONTROL FLOW INTO AN UNSTRUCTURED
LANGUAGE. ALSO USED AS CONTROL SUBLANGUAGE OF CRISP-FLOW (FLOWCHARTS) AND
CRISP-PDL PROCESSORS. (DAN 1153)

CRITICAL PIECE FIRST
THE IMPLEMENTATION OF THE MOST CRITICAL ASPECTS OF THE SYSTEM FIRST.

CRITICAL REGION
A REGION WITHIN A PROCESS IN WHICH A SHARED RESOURCE MUST ONLY BE ACCESSED
ON A MUTUALLY EXCLUSIVE BASIS FOR PROGRAM CONSISTENCY AND CORRECTNESS. (DAN
1153)

CROSS COMPILER
A TOOL THAT CAN OPERATE ON A HOST COMPUTER AND PRODUCE CODE FOR A DESIGNATED
EXTERNAL COMPUTER. (DAN LD7) (2) A COMPILER PROGRAM WHICH IS EXECUTED BY ONE
COMPUTER TO GENERATE OBJECT CODE FOR ANOTHER TYPE OF COMPUTER. (NASA)

CROSS REFERENCE
A LIST OF THE IDENTIFIERS USED BY A PROGRAM SHOWING (BY MEANS OF INDICES OR

26

t

-L

STATEMENT NUMBERS) WHICH STATEMENTS OF THE PROGRAM DEFINE AND REFERENCE
THOSE IDENTIFIERS. (SEL) (2) A NOTATION OR DIRECTION IN ONE PLACE TO
PERTINENT INFORMATION IN ANOTHER PLACE. OFTEN USED FOR AN INDEX OF VARIABLE
NAMES IN A PROGRAM. (ANSI-X3H1)

CROSS-ASSEMBLER
A COMPUTER PROGRAM THAT ACCEPTS SYMBOLIC INSTRUCTION MNEMONICS FOR A
SELECTED TARGET COMPUTER AND GENERATES TARGET COMPUTER MACHINE CODE WHILE
HOSTED ON ANOTHER COMPUTER. A CROSS-ASSEMBLER THUS ALLOWS CODE WRITTEN FOR
ONE COMPUTER TO BE ASSEMBLED ON ANOTHER. (DAN 134)

CROSS-REFERENCE PROGRAMS
A GROUP OF COMPUTER PROGRAMS THAT PROVIDE CROSS-REFERENCE INFORMATION ON
SYSTEM COMPONENTS. FOR E(AMPLE, PROGRAMS CAN BE CROSS-REFERENCED WITH OTHER
PROGRAMS, MACROS, PARAMETER NAMES, ETC. THIS CAPABILITY IS USEFUL IN
PROBLEM-SOLVING AND TESTING TO ASSESS IMPACT OF CHANGES TO ONE AREA OR
ANOTHER. (DAN 134) (2) UTILITY PROGRAMS WHICH PROVIDE CROSS-REFERENCE DATA
CONCERNING A PROGRAM WRITTEN IN A HIGHER LEVEL LANGUAGE. THESE UTILITY
PROGRAMS ANALYZE A SOURCE PROGRAM AND PROVIDE AS OUTPUT SUCH DATA AS
FOLLOWS: 1.STATEMENT LABEL CROSS-INDEX 2. DATA NAME CROSS-INDEX 3. LITERAL
USAGE CROSS-INDEX 4. INTER-SUBROUTINE CALL CROSS-INDEX 5. STATISTICAL COUNTS
OF STATEMENT TYPES (DAN 142)

CURRICULA
INDEXING TERM. REFERS TO COURSES OF STUDY IN SOFTWARE ENGINEERING.

CYCLIC DATA
DATA ON PROGRAMMING ACTIVITES THAT OCCURRED SINCE THE LAST MANAGEMENT
REPORTING PERIOD. (DAN 137)

DAS (DESIGN ANALYSIS SYSTEM)
AN AUTOMATED SYSTEM THAT SUPPORTS DESIGN VERIFICATION WITH THE GOAL OF
IMPROVED SOFTWARE QUALITY AND REDUCED LIFE CYCLE COSTS. (DAN 256)

DATA
DATA IS A REPRESENTATION OF FACTS, CONCEPTS, OR INSTRUCTIONS IN A STRUCTURED
FORM SUITABLE FOR ACCEPTANCE, INTERPRETATION, OR PROCESSING BY COMPUTER
EQUIPMENT...DATA CAN BE EXTERNAL (IN COMPUTER-READABLE FORM) OR RLSIDENT
WITHIN THE COMPUTER EQUIPMENT AND CAN BE IN THE FORM OF ANALOG OR DIGITAL
SIGNALS. (SET) (2) A SET OF FACTS. (DAN 137)

DATA ANALYSIS
INDEXING TERM. REFERS TO THE APPLICATION OF STATISTICAL PROCEDURES TO RAW
DATA TO OBTAIN INFORMATION RELATING TO SOME ASPECT OF SOFTWARE
DEVELOPMENT,USE, RELIABILITY, OR MAINTENANCE.

DATA ANALYSIS TOOLS
PROGRAMS SPECIFICALLY DESIGNED TO PERFORM SIATISTICAL AND COMPARATIVE
ANALYSIS ON DATA PRODUCED DURING THE EXECUTION OF A PROGRAM TEST. (DAN LD7)

DATA BASE
(1) (ISO) A SET OF DATA, PART OR THE WHOLE OF ANOTHER SET OF DATA, AND
CONSISTING OF AT LEAST ONE FILE, THAT IS SUFFICIENT FOR A GIVEN PURPOSE OR
FOR A GIVEN DATA PROCESSING SYSTEM. (2) A COLLECTION OF DATA FUNDAMENTAL TO

27

A SYSTEM. (3) A COLLECIION OF DATA FUNDAMENTAL TO AN ENTERPISE. (ANSI-X3)

DATA BASE ANALYZER
A COMPUTER PROGRAM, THAT REPORTS INFORMATION ON EVERY USAGE OF DATA,
IDENTIFIES EACH PROGRAM USING ANY DATA ELEMENTS, AND INDICATES WHETHER THE
PROGRAM INPUTS, USES, MODIFIES, OR OUTPUTS THE DATA EL[E,'l T . ANY UNUSED DATA
IS PRINTED. ERRORS DEALING WITH MISUSE AND NON-USE OF DATA AND CONFLICTS IN
DATA USAGE ARE IDENTIFIED. (DAN 134)

DATA BASE APPLICATIONS
THIS CATEGORY IS TO INCLUDE COMPONENTS WHICH RETRIEVE, WRITE TO, OR FORMAT
INFORMATION FOR A WELL DEFINED FORMATTED BANK OF If'FORMATION AVAILABLE TO
THE SYSTEM. IT IS UP TO THE USER TO DECIDE WHETHER THE CATA SET IS TO BE
CONSIDERED A DATA BASE OR NOT.AN EXAMPLE OF AN ACCEPTABLE DATA BASE WOULD BE
THE ADL FILE, SLP FILE, GEODETICS FILE, ETC., WHILE A SEQUENTIAL TELEMETRY
FILE ON TAPE WOULD NOT BE. (SEL)

DATA BASE MANAGEMENT SYSTEM
A DATA BASE MANAGEMENT SYSTEM (DBMS) INCLUDES A DATA DESCRIPTION LANGUAGE
(DDL) FOR DESCRIBING THE LOGICAL ORGANIZATION OF DATA IN THE DATA BASE, AND
A DATA MANIPULATION LANGUAGE (DML) FOR ACCESSING AND MODIFYING THE DATA
BASE. (DAN 273)

DATA COLLECTION
REFERS TO THE METHODS (I.E. FORMS, PROCEDURES, PERSONNEL) FOR COLLECTING
DATA AND THE POINT (TIME) AT WHICH DATA COLLECTION SHOULD BEGIN. (DAN 295)

DATA COLLECTION COSTS
THE COST OF COLLECTING DATA, ESPECIALLY WITH REGARD TO ERROR DATA. (DAN 509)

DATA DEFINITION LANGUAGE
A COMPUTER PROGRAM USED TO DESCRIBE DATA AT A SUFFICIENTLY HIGH LEVEL IN
ORDER TO MAKE THE USE OF A PARTICULAR PROGRAMMING LANGUAGE TRANSPARENT TO
THE DATA DEFINITION PROCESS. THIS LANGUAGE ALLOWS US TO SPECIFY THE DATA SO
THAT MULIPLE LANGUAGES CAN SHARE AND USE IT. (DAN 134)

DATA DICTIONARY
A LISTING OF THE NAMES, LENGTHS AND REPRESENTATIONS OF ALL DATA ITEMS USED
IN A SOFTWARE SYSTEM. THIS TOOL MAY BE MANUAL OR AUTOMATED.

DATA DOMAIN
AN APPROACH TO OBTAINING AN ESTIMATE OF OPERATIONAL RELIABILITY. IN
PRINCIPAL, IF ALL SETS OF INPUT DATA VALUES UPON WHICH THE COMPUTER PROGRAM
MUST OPERATE ARE IDENTIFIED, AN ESTIMATE OF THE RELIABILITY OF THE PROGRAM
COULD BE OBTAINED BY RUNNING THE PROGRAM FOR ALL SUCH POSSIBLE SETS. IN
PRACTICE A METHODOLOGY IS USED TO SELECT SAMPLE DATA SETS FROM THE TOTAL OF
SUCH SETS WHICH ARE REPRESENTATIVE OF INTENDED OPERATIONAL USAGE AND THE
PROGRAM IS RUN FOR THOSE SETS ONLY. THE RESULTS OF THE RUNS ON THE SAMPLE
DATA SETS ARE USED TO COMPUTE RELIABILITY ESTIMATES FOR THE PROGRAM IN ITS
INTENDED OPERATIONAL ENVIRONMENT. (DAN 238)

DATA FLOW DIAGRAMS
SEE DATA FLOWGRAPH

28

• it & '

DATA FLOWGRAPH
A DEVICE WHICH HELPS TO GRAPHICALLY DISPLAY WHAT HAPPENS TO DATA, HOW DATA
IS TRANSFORMED, AND HOW ONE CAN PARTITION THE PROCESS INTO SUBPROCESSES WITH
A MINIMAL NEED OF DATA TRANSFERS. (DAN 323)

DATA ITEM
A SPECIFIC ENTITY OF DATA. (DAN 137)

DATA OBJECT
AMBIGUOUSLY, EITHER A NAME OR A VALUE TO WHICH AN OPERATION MAY BE APPLIED.
(ABBOTT)

DATA PARAMETERS - RELIABILITY
THE INPUT(S) TO A RELIABILITY ESTIMATION PROGRAM. THESE INPUTS OR PARAMETERS
ARE USUALLY GROUPED INTO FIVE CATEGORIES; (1) FAILURE DATA WHICH INCLUDES A
SET OF EXECUTION TIME INTERVALS BETWEEN FAILURES, ALONG WITH THE NUMBER OF
DAYS FROM THE START OF TESTING ON WHICH THE FAILURES OCCURRED; (2) PLANNED
DATA INCLUDES AVAILABLE COMPUTER TIME, NUMBERS OF AVAILABLE FAILURE
CORRECTION PERSONNEL AND FAILURE IDENTIFICATION PERSONNEL, COMPUTER TIME
UTILIZATION FACTOR, FAILURE CORRECTION PERSONNEL UTILIZATION FACTOR, AND
OBJECTIVE MEAN TIME TO FAILURE; (3) DEBUG ENVIRONMENT DATA INCLUDES AVERAGE
OF COMPUTER TIME REQUIRED PER FAILURE, CORRECTION WORK REQUIRED PER FAILURE
AND FAILURE IDENTIFICATION WORK; (4) TEST ENVIRONMENT DATA INCLUDES THE
TESTING COMPRESSION FACTOR AND THE TINES WHEN TESTING WAS STARTED, STOPPED,
OR INTERRUPTED; AND (5) PROGRAM DATA INCLUDES THE ESTIMATION OF THE NUMBER
OF FAILURES REQUIRED TO EXPOSE AND REMOVE ALL ERRORS, AND INITIAL MTTF AT
START OF TESTING.

DATA PROCESSING APPLICATIONS
(ISO) THE EXECUTION OF A SYSTEMATIC SEQUENCE OF OPERATIONS PERFORMED UPON
DATA, E.G. HANDLING, MERGING, SORTING, COMPUTING. SYNONYMOUS WITH
INFORMATION PROCESSING. (ANSI-X3)

DATA REDUCTION TOOLS
PROGRAMS, OFTEN DATA-BASE DEPENDENT, WHICH PROCESS A DATA SET AND CONVERT
THE INFORMATION INTO READABLE FORM. THESE PROGRAMS PERFORM STATISTICAL AND
COMPARATIVE TRANSFORMATIONS ON THE RECORDED DATA OBTAINED BY
INSTRUMENTATION. (DAN LD7)

DATA REPOSITORY
A FACILITY FOR GATHERING , STORING AND DISSEMINATING DATA RELATED TO A
PARTICULAR TOPIC OR GROUP OF TOPICS.

DATA RESTRUCTURING
THE PROCESS OF CHANGING THE REPRESENTATION OF DATA IN MEMORY.

DATA SEMANTICS
FROM THE USERS' POINT OF VIEW, A DATABASE IS A COLLECTION OF INFORMATION
MODELING SOME ENTERPRISE IN THE REAL WORLD. THE ROLE OF DATA SEMANTICS IS TO
ENSURE THAT STORED DATA ACCURATELY REPRESENTS THE ENTERPRISE. (DAN 412)

DATA STRUCTURE
THE LOGICAL RELATIONSHIPS WHICH EXIST AMONG THE UNITS OF DATA IN A DATABASE
AND WHICH ARE UNDER CONTROL OF A DATABASE MANAGEMENT SYSTEM. (2) A

29.•- _

FORMALIZED REPRESENTATION OF THE ORDERING AND ACCESSIBILITY RELATIONSHIPS
AMONG STORED DATA ITEMS, WITHOUT REGARD TO THE ACTUAL STORAGE CONFIGURATION,
AS CHARACTERIZED BY DATA-ITEM TYPES, RANGES OF VALUES, AND SCOPE OF
ACTIVITY, SUITABLE FOR COMMUNICATION, INTERPRETATION, OR PROCESSING BY HUMAN
OR AUTOMATIC MEANS. (DAN 1153)

DATA TYPE(S)
A DOMAIN OF VALUES AND AN INTERPRETATION FOR THOSE VALUES. (ANSI-X3HI) (2)
ONE CLASS IN A DATA TYPOLOGY. ALL OBJECTS IN A DATA TYPE MAY BE SUBJECTED TO
THE SAME OPERATIONS. (ABBOTT) (3) A SET OF ATTRIBUTES USED TO DEFINE A SET
WHOSE ELEMENTS ARE DATA STRUCTURES, AND ON WHICH AN ALGEBRA IS DEFINED.
FUNDAMENTAL TYPES ARE THOSE EXPLICIT IN A PROGRAMMING LANGUAGE. FUNDAMENTAL
SIMPLE TYPES USUALLY INCLUDE INTEGERS AND REALS, AND FUNDAMENTAL STRUCTURES
USUALLY INCLUDE THE INDEXED ARRAY. (DAN 1153)

DATA TYPOLOGY
A CLASSIFICATION FOR DATA OBJECTS TO BE MANIPULATED BY PROGRAMS. THE
CLASSIFICATION SERVES TO ORGANIZE DATA OBJECTS INTO CLASSES (CALLED DATA
TYPES) OVER WHICH OPERATIONS MAY BE DEFINED. (ABBOTT)

DATA VALIDATION
THE PROCESS OF VERIFYING THAT DATA WHICH HAS BEEN COLLECTED AND ENTERED INTO
A DATA BASE IS ACCURATE AND COMPLETE.

DATA WORD
A BINARY NUMBER WITH A PRESCRIBED FORMAT AND NUMBER OF BITS. (NASA)

DATAWARE
ONE OF TWO MAJOR COMPONENTS OF SOFTWARE AS DEFINED BY T. GILB. DATAWARE IS
THE PHYSICAL FORM IN WHICH ALL INFORMATIUN, INCLUDING LOGICWARE,APPEARS TO
THE HARDWARE, AND WHICH IS PROCESSED AS A RESULT OF THE LOGIC OF THE
LOGICWARE. SEE ALSO LOGICWARE. (DAN 781)

DEADLOCK
A STATE OF INACTION OR NEUTRALIZATION RESULTING FROM THE OPPOSITION OF TWO
OR MORE EQUALLY POWERFUIL ENTITIES. OFTEN USED WHEN RESOURCES ARE ALLOCATED
TO VARIOUS ENTITIES, SUCH THAT NONE CAN PROCEED WITHOUT THE RESOURCES OF
ANOTHER. DEADLOCK AVOIDANCE IS THE TECHNIQUE OF ALLOCATING RESOURCES SUCH
THAT DEADLOCK CANNOT OCCUR. DEADLOCK DETECTION IS THE TECHNIQUE OF DETECTING
DEADLOCK ONCE IT HAS OCCURRED. DEADLY EMBRACE IS SYNONYMOUS WITH DEADLOCK.
(ANSI-X3HI)

DEADLY EMBRACE
SYNONYM FOR DEADLOCK

DEALLOCATE
THE CONVERSE OF ALLOCATE. (ANSI-X3H1)

DEBUGGING
TESTING IS THE PROCESS OF DETERMINING WHETHER OR NOT ERRORS/FAULTS EXIST IN
A PROGRAM. DEBUGGING IS AN ATTEMPT TO ISOLATE THE SOURCE OF THE PROBLEM AND
TO FIND A SOLUTION...DEBUGGING IS REQUIRED ONLY IN THE EVENT THAT ONE OR
MORE TESTS FAIL. IT IS THE PROCESS OF LOCATING THE ERROR/FAULT WHICH CAUSED
A TEST TO FAIL. (DAN 609) (2) THE IDENTIFICATION AND CORRECTION OF SOFTWARE

30

I(D

DISCREPANCIES.(NASA)

DEBUGGING MODEL
AMODLL WHICH RELATES THE EFFECTS OF BUG REMOVAL, SPAWNED BUGS, AND BUG
DETECTION WITHOUT BUG REMOVAL DURING THE DEBUGGING/TESTING PHASE OF THE
SOFTWARE LIFE CYCLE. A LEBUGGING MODEL'S OUTPUTS MAY INCLUDE ESTIMATES OF
THE NUMBER OF REMAINING ERRORS/FAULTS AT A GIVEN TINE, TIME NECESSARY TO
REACH A GIVEN LEVEL OF "ERROR FREENESS", OR COST OF DEBUGGING TO A GIVEN
LEVEL OF "ERROR FREENESS".

DEBUGGING TOOLS
THOSE PROGRAMS DESIGNED TO LOCATE AND ELIrINATE PROGRAMMING ERRORS AND TO
TEST A PROGRAM FOR PROPER EXECUTION . (DAN LD7) (2) SOFTWARE TOOLS AVAILABLE
TO THE SYSTEM OPERATOR AND USED TO LOCATE ERRORS IN SOFTWARE. (THE TOOLS MAY
INCLUDE DUMP, SNAP, INSPECT AND CHANGE, AND TIME CAPABILITIES.) (DAN 1201)

DECISION TABLE
A TABULAR REPRESENTATION OF THE FOLLOWING THREE ITEMS: 1. CONDITIONS-
FACTORS TO CONSIDER IN MAKING A DECISION. 2. ACTIONS - STEPS TO BE TAKEN
WHEN A CERTAIN COMBINATION OF CONDITIONS EXIST. 3. RULES - SPECIFIC
COMBINATIONS OF CONDITIONS AND THE ACTIONS TO BE TAKEN UNDER THOSE
CONDITIONS. (DAN 813) (2) A TABLE OF ALL OR SELECTED CONTINGENCIES TO BE
CONSIDERED IN THE DESCRIPTION OF A PROBLEM OR THE SPECIFICATION OF
SOLUTION, TOGETHER WITH ACTIONS TO BE TAKEN IN! EACH COMBINATION OF
CONTINGENCIES. ALSO CALLED DECISION LOGIC TABLES:' (DAN 1153)

DEFAULT
(1) AN ALTERNATIVE VALUE, ATTRIBUTE , OR OPTION THAT IS ASSUMED WHEN NONE
HAS BEEN SPECIFIED AND ONE IS REQUIRED. (ANSI-X3H1) (2) TO MAKE AN
ASSIGNMENT OF A VALUE, ATTRIBUTE, OR OPlION IN THE ABSENCE OF AN OTHERWISE
SPECIFIED VALUE, ATTRIBUTE OR OPTION WHEN ONE IS REQUIRED. (ANSI-X3HI)

DEFICIENCY
A MISSING FUNCTION OR CAPABILITY REQUIRED IN SOFTWARE. (DAN 1201)

DELIVERABLE CODE INDICATOR
INDICATES WHETHER OR NOT THE CODE WILL PE DELIVERED TO THE CUSTOMER. (DAN
137)

DELIVERY
THE POINT AT WHICH THE SOFTWARE PACKAGE IS TURNED OVER TO A CUSTOMER FOR USE
IN THE OPERATIONAL ENVIRONMENT. (DAN 21)

DEPENDENT FUNCTION
IN SOFTWARE, A '-OGRAM WHICH DEPENDS ON OTHER PROGRAMS OR SUBPROGRAMS TO
IMPLEMENT SOME OF ITS FUNCTIONS. (bAN 1201)

DEQUE
A DATA STRUCTURE (DOUBLE-ENDED QUEUE, PRONOUNCED "DECK") THAT, TOGETHER WITH
ITS ACCESS FUNCTIONS, MODEL OPERATIONS WITH A LINEAR LIST IN WHICH
INSERTIONS CAN BE MADE AT EITHER END OF THE LIST. (DAN 1153)

DESIGN

DESCRIPTION OF WHAT THE SYSTEM MUST DO, ITS COMPONENTS, THE INTERFACES AMONG

31

2
THOSE COMPONENTS, AND THE SYSTE'S INTERFACE(S) TO THE ETEPNAL LNVIRONMENT.
(SEE) (2) A DESCRIPTION OF HOW SOFTWARE WILL EL PRODUCLD TO SATISFY THE
SOFTWARE SPECIFICATION. (DAN 1201) (3) THAT ACTIVITY WHICH DEFINES PROGRAM
DATA STRUCTURES AND LOGICAL ALGORITHMS IN RESPONSE TO, AND CONFORMING WITH,
THE SOFTWARE FUNCTIONAL SPECIFICATION. IT CONSISTS OF DESCRIBING THE
ORGANIZATION, DATA MANIPULATIONS, I/0 PROCEDURES AND FORMATS, ETC., CARRIED
TO A LEVEL Of DETAIL SUFFICIENT FOR CODING AND OPERATIONAL IMPLEMENTATION.
ALSO, THE WORD "DESIGN" MAY REFER TO THE STRUCTURE OF THE PROGRAM RESULTING
FROM THE DESIGN ACTIVITY, AND, THEREFORE, TO THE SOFTWARE PROGRAMMING
SPECIFICATION. EEVLLOPMENT Of THE SOFTWARE FUNCTIONAL SPECIFICATIONS IS
SOMETIMES CALLED FUNCTIONAL DESIGN. (DAN 1153)

DESIGN ANALYSIS
DESIGN ANALYSIS ENSURES IHAT THE CU.PUTER PROGRAM DESIGN IS CORRECT AND THAT
IT SATISFIES THE DEFINED SOFTWARE REQUIREMENTS WITH RESPECT TO DESIGN,!
COMPLETENESS AND THE VARIOUS DESIGN' ELEMENTS: MATHEMATICAL EQUATIONS,
ALGORITHMS, AND CONTROL LOGIC. (DAN 306)

DESIGN ANALYZER
A SOFTWARE DESIGN TOOL WHICH CAN CE USED TO OBTAIN INFORMATION ABOUT A
PROGRAM'S DESIGN AND STRUCTURE. MOST DESIGN ANALYZERS WILL ANALYZE THE
CONTROL STRUCTURE AND DATA STRUCTURES OF A PROGRAM AND OUTPUT, USUALLY IN
TABULAR FORM, AN INDEXED LIST OF ALL MODULES IN A PROGRAM, STATISTICS ABOUT
THE MODULE, A LIST OF OTHER MODULES CALLED BY IT, AND AN INDEXED LIST OF ALL
DATA BLOCKS THAT ARE ACCESSED. DESIGN ANALYZERS MAY ALSO BE USED TO PRODUCE
A GRAPHICAL DESCRIPTION OF A PROGRAr:'S CONTROL STRUCTURE, FOR DEBUGGING, FOR
STANDARDS ENFORCEMENT, AND FOR COLLECTING RUN-TIME STATISTICS.

DESIGN HIERARCHY
IN SOFTWARE, A PROGRAM DESIGN IN WHICH THE IDENTIFIED PROGRAMMABLE ELEMENTS
ARE ARRANGED IN ORDER OF DEPENDENCY FROM THE MOST DEPENDENT ELEMENTS TO THE
LEAST DEPENDENT ELEMENTS. (DAN 1201)

DESIGN IMPLEMENTATION SPECIFICATIONS
THIS 'OCUMENT DEFINES THE SYSTEM AND PROGRAM DESIGN. IT INCLUDES BLOCK AND
PROGRAM FLOW DIAGRAMS, SET-USED INIORMATION ON ALL DATA DESCRIPTIONS OF ALL
DATA AND MAY INCLUDE NARRATIVE DESCRIPTIONS OF THE OPERATION OF EVERY
PROGRAM IN THE SYSTEM. (DAN LD7)

DESIGN INSPECTION
VISUAL INSPECTION OF THE DESIGN BY PERSONS OTHER THAN THE CREATOR OF THE
DESIGN. (SEE)

DESIGN LANGUAGES
A COMPUTER PROGRAM USED TO PROVIDE AN UNDERSTANDABLE REPRESENTATION OF THE
SOFTWARE DESIGN AS IT EVOLVES. THESE PROGRAMS ALLOW DESIGNS TO BE
CONSTRUCTED AND EXPANDED IN A HIERARCHICAL FASHION. THEY DOCUMENT THE DESIGN
AND THE DECISIONS THAT LED TO IT. (DAN 134)

DESIGN METHODOLOGIES
A COLLECTION OF WORK PROCEDURES TO BE USED BY THE DESIGNER TO CARRY OUT THE
DESIGN TASKS REQUIRED, BY THE SYSTEM TO BE DESIGNED. (DAN 254)

DESIGN OBJECT

32

A CONSTRUCT USED IN SOFTWARE DESIGN, PRODUCTION AND TEST TO IDENTIFY THE
LOCATION OF EACH CODED OBJECT IN ACCORDANCE WITH A LIST OF RULES. (DAN 1201)

DESIGN OBJECT NETWORK
A DRAWING DEPICTING THE HIERARCHY AND REAL INTERCONNECTIONS OF DESIGN'
OBJECTS WITH A SUBPROGRAM. (DAN 1201)

DESIGN OBJECTIVE
GOALS TO BE ACCOMPLISHED BY THE SOFTWARE BEING GENERATED.

DESIGN PHASE
THE CREATION AND RECORDING OF THE DESIGN, INCLUDING DISCUSSION ABOUT
STRATEGY WITH PEERS. THIS PHASE DOES NOT INCLUDE THE DEVELOPMENT OF ANY CODE
AT THE PROGRAMMING LANGUAGE LEVEL. IT DOES INCLUDE THE CREATION OF
SPECIFICATIONS FOR SUBCOMPONENTS OF THE CURRENT COMPONENT. (SEL) (2) DURING
THE DESIGN PHASE, THE SOFTWARE COMPONENT DEFINITIONS, INTERFACE, AND DATA
DEFINITIONS ARE GENERATED AND VERIFIED AGAINST THE REQUIREMENTS. (SET)

DESIGN REQUIREMENTS BASELINE DOCUMENT
THIS DOCUMENT IS THE BASELINE DESCRIPTION OF THE OBJECT SYSTEM: HENCE, THE
FOUNDATION UPON WHICH SYSTEM DESIGN AND CONFIGURATION CONTROL PROCEED. (DAN
LD7)

DESIGN REVIEW
A SCHEDULED MEETING BETWEEN CUSTOMER AND MANUFACTURER TO DETERMINE THAT A
PROPOSED SOFTWARE CONFIGURATION WILL SATISFY APPROVED PERFORMANCE
SPECIFICATIONS. (DAN 1201) SEE ALSO DESIGN READING

DESIGN SIMULATION
A TECHNIQUE THAT DESCRIBES A PROPOSED SYSTEM, PRODUCES A COMPUTER BASED
"MODEL" OR SIMULATED SYSTEM, AND THEN EVALUATES THE EFFECT OF VARIOUS SYSTEM
REQUIREMENTS AND DESIGN ALTERNATIVES. (DAN 154)

DESIGN SPECIFICATION
A DOCUMENT CONTAINING THE APPROVED DESIGN REQUIREMENTS FOR A PROGRAM. (DAN
1201)

DESIGN VALIDATION
THE EXAMINATION OR INSPECTION OF THE FUNCTIONAL REQUIREMENTS AND THE DESIGN
OF A SOFTWARE SYSTEM FOR THE PURPOSE OF FINDING ERRORS. OTHER TERMS USED TO
DESCRIBE THIS TECHNIQUE OR VARIATIONS OF THIS TECHNIQUE INCLUDE DESIGN
REVIEW, PROJECT REVIEW, DESIGN INSPECTIONS,WALK-THROUCHS, AND INPROCESS
REVIEWS. THIS TECHNIQUE IS SIMILAR TO THE TECHNIQUE EXCEPT THAT IT IS
PERFORMED EARLIER IN THE SOFTWARE DEVELOPMENT CYCLE AND AT A SYSTEM
FUNCTIONAL LEVEL. (DAN 154)

DESIGN VERIFICATION
THE EXAMINATION OR INSPECTION OF A SOFTWARE SPECIFICATION FOR THE PURPOSE OF
FINDING DESIGN ERRORS. OTHER TERMS USED IN THE LITERATURE TO DESCRIBE THIS
TECHNIQUE OR VARIATIONS OF THIS TECHNIQUE INCLUDE DESIGN REVIEW, DESIGN
INSPECTION, SPECIFICATION TESTING, PAPER TESTING WALK-THROUGH, STRUCTURED
WALK-THROUGH, AND PRELIMINARY DESIGN REVIEW. (DAN 154)

DESIRED BEHAVIOR SPECIFICATION

33

DESCRIBING THE POSSIBLE SEQUENCING AND SIMULTANEITY OF EVENT OCCURRENCES
WHICH WOULD BE CONSIDERED ACCEPTABLE DURING A SYSTEN'S OPERATION. (DAN 242)

DESK CHECKING
DESK CHECKING (DC) IS A TERM COVERING THE TOTALITY OF VERIFICATION EFFORTS
PERFORMED MANUALLY DURING PROGRAM CHECKOUT WITHOUT BENEFIT OF A COMPUTER OR
SIMULATOR...MOST COMMONLY, DESK CHECKING REFERS TO (1) DOING ARITHMETIC
CALCULATIONS TO VERIFY OUTPUT VALUE CORRECTNESS, AND (2)"PLAYING COMPUTER"
(I.E., MANUALLY SIMULATING PROGRAM EXECUTION) IN ORDER TO UNDERSTAND AND
VERIFY PROGRAM LOGIC AND DATA FLOW. DESK CHECKING IS AN ESSENTIAL PART OF
ANY VERIFICATION PROCESS. IT USUALLY CONCENTRATES ON AREAS OF SPECIAL
PROBLEMS, ESPECIALLY SUSPECTED ERRORS OR CODE INEFFICIENCIES. ALSO, SEE -
CODE VERIFICATION, PEER CODE REVIEW (SET)

DETERMINISM
THE PROPERTY OF A TRANSFORMATION PROCESS THAT THE SAME OUTPUTS ARE ALWAYS
PRODUCED FOR A GIVEN SET OF INPUTS. (ANSI-X3HI)

DEVELOPMENT
THE GENERATION OF SOFTWARE FROM ITS ORIGINAL CONCEPTION THROUGH ANALYSIS,
CODE PRODUCTION, CHECKOUT, DOCUMENTATION, DELIVERY, AND INTEGRATION OF THE
COMPLETED PROJECT. (DAN 1201) (2) THAT PROCESS BY WHICH NEW SUTWARE COMES
INTO BEING AS A PROCESS OF DESIGN, RATHER THAN BY A PROCESS OF MODIFICATION.
IT INCLUDES BOTH THE ARCHITECTURAL AND IMPLEMENTATION PHASES. (DAN 11L3)

DEVELOPMENT CYCLE
SEE SOFTWARE DEVELOPMENT CYCLE

DEVELOPMENT LIFE CYCLE
SEE SOFTWARE DEVELOPMENT CYCLE

DEVELOPMENT MANAGEMENT
PROCEDURES FOR MANAGING THE DEVELOPMENT PHASE OF A SYSTEM, PROGRAM, OR
SOFTWARE PROJECT. (DAN 355)

DEVELOPMENT PHASE
THE DEVELOPMENT AND RECORDING OF CODE AND IN-LINE COMMENTS BASED ON THE
DESIGN. THIS PHASE INCLUDES THE MODIFICATION OF CODE CAUSED BY DESIGN
CHANGES, ERRORS FOUND IN TESTING, ETC IT DOES NOT INCLUDE ANY TIME SPENT
IN ENTERING THE CODE INTO THE COMPUTER. (SEL)

DEVELOPMENT PROCESS
SEE SOFTWARE DEVELOPMENT PROCESS

DEVELOPMENT SUPPORT LIBRARIAN
ONE OF THE MEMBERS OF THE CHIEF PROGRAMMER TEAM. THE LIBRARIAN IS
RESPONSIBLE FOR THE PROGRAMMING-PRODUCT LIBRARY, CONTAINING BOTH
MACHINE-AND-HUMAN-READAFLE MATERIAL. THIS FUNCTION HELPS TO TRANSFORM
PROGRAMMING "FROM A PRIVATE ART TO PUBLIC PRACTICE." (DAN 227) PROGRAM
LIBRARY.

DEVELOPMENT TEST AND EVALUATION
FEST AND EVALUATION THAT FOCUSES ON THE TECHNOLOGICAL AND ENGINEERING
ASPECTS OF THE SYSTEM, OR EQUIPMENT ITENS. (AFR80-14)

34

Mild

-1

DEVELOPMENTAL TOOLS AND TECHNIQUES
INDEXING TERM. REFERS GENLPAI LY !L SUME TU(iL Uk T [CNIQUL OR TO A GROUP OF
TOOLS AND/OR TECHNIQUES USED IN MURL TAN ONE PHASE OF THE SOFTWARE
DEVELOPM;ENT CYCLE.

DIAGNOSTIC DEBUG AIDS
COMPILE AND EXECUT(f)N TIME CHLCKOCT Af:D DEBUG CAPABILITIES THAT HELP
IDENTIFY AND ISOLATE PROGRPM ERRORS. THE5E CAPP31LITIES USUALLY INCLUDE
COMMANDS OR DIRECTIVES SUCH AS DUMP, TRACE, M-ODIFY, CONTENTS, BREAKPOINT,
ETC. (DAN 134)

DIAGNOSTICS
AN INDICATION AND DESCRIPTION OF A SOFTWARE DISCREPANCY AS NOTED EY A
COMPUTER PROGRAM SUCH AS A COMPILER. (NASA)

DIFFICULTY
A MEASURE OF HOW "HARD" IT IS TO ACCOMPLISH A GIVEN PROJECT. DIFFICULTY
EXPRESSES THE TIME RATE OF CHANGE IN NANPOWER UTILIZATION. DIFFICULTY VARIES
DIRECTLY WITH SIZE OF THE PROJECT AND INVERSELY AS THE LENGTH OF
DEVELOPMENT. D=K/(TD)2 WHERE D IS DIFFICULTY, K IS SIZE AND (TD)2 IS THE
SQUARE OF THE DEVELOPMENT TIME. (DAN 724)

DIGITAL AIRCRAFT CONTROL
INDEXING TERM. REFERS TO THE DEVELOPMENT OR USE OF DIGITAL COMPUTING SYSTEMS
(HARDWARE AND SOFTWARE) FOR REAL-TIME AIRCRAFT CONTROL.

DIGITAL WORD
A BINARY NUMBER WHOSE BIT LENGTH CORRESPONDS TO THAT TYPICAL OF MEMORY OR
BASIC ARITHMETIC OPERATIONS. (NASA)

DIRECT INTERFACE
AN INTERFACE IMMEDIATELY BETWEEN TWO SOFTWARE ELEMENTS. (DAN 21)

DISCRETE PROCESS
A PROCESS IN WHICH DATA ARE EXPRESSIBLE ONLY AS DISCRETE QUANTITIES AND ONLY
AT SPECIFIC POINTS IN TIME, E.G., THE SOLUTION OF A DIFFERENCE EQUATION FOR
A PARTICULAR INPUT SEQUENCE. (NASA)

DISCRETE SYSTEMS ANALYSIS
THE PROCESS OF APPLYING THE HIGHLY DEVELOPED ELECTRICAL ENGINEERING
TECHNIQUES OF ANALYZING DISCRETE SYSTEMS OF TWO TERMINAL ELEMENTS TO
ANALYZING THE COMPLEXITY AND EXECUTION TIME OF COMPUTER PROGRAMS. (DAN 719)

DISTINCTNESS
SOFTWARE DISTINCTNESS IS A MEASURE OF THE FAILURE-POINT INDEPENDENCE OF A
PIECE OF SOFTWARE WHICH IS PERFORMING THE SAME FUNCTION AS ANOTHER PIECE OF
SOFTWARE. IT IS ANALOGOUS TO HARDWARE DISTINCTNESS WHICH IS UTILIZED IN DUAL
HARDWARE SYSTEMS, WHICH PERFORM THE SAME TASK AND RARELY FAIL AT THE SAME
INSTANT. (DAN 781)

DISTRIBUTED PROCESSING SYSTEM
A COOPERATIVE DISTRIBUTED PROCESSING SYSTEM IS DEFINED AS A COLLECTION O)
INTERCONNECTED PROCESSING ELEMENTS WITH DECENTRALIZED CONTROL THAT PERMITS
COOPERATION AMONG PROCESSORS FOR THE EXECUTION OF A SINGLE TASK. (DAN 273)

3

DISTRIBUTED SYSTEMS ARE AN APPROPRIATE RESPONSE TO DISTRIBUTED FUNCTIONS TO
BE PERFORMED. THE FUNCTIONS MAY BE DISTRIBUTED GEOGRAPHICALLY
OPERATIONALLY OR MANAGERIALLY. THE IMPORTANT CHARACTERISTIC IS THAT THEY BE
FUNCTIONALLY INDEPENDENT OF ONE ANOTHER AND HAVE WEAK, WELL-DEFINED DATA
FLOW ORIENTED INTERACTIONS. (DAN 346) (3) A COOPERATIVE ARRANGEMENT OF
INTERCONNECTED COMPUTERS WHOSE QUASI-AUTONOMOUS OPERATIONS ARE COORDINATED
BY A REASSIGNABLE EXECUTIVE PROGRAM. (NASA)

DOCUMENTATION
SOFTWARE DOCUMENTATION IS TECHNICAL DATA, INCLUDING COMPUTER LISTINGS AND
PRINTOUTS, IN HUMAN-READABLE FORM WHICH (1) DOCUMENTS THE DESIGN OR DETAILS
OF THE SOFTWARE, (2) EXPLAINS THE CAPABILITIES OF THE SOFTWARE, OR (3)
PROVIDES OPERATING INSTRUCTIONS FOR USING THE SOFTWARE TO OBTAIN DESIRED
RESULTS FROM COMPUTER EQUIPMENT. (2) WRITTEN MATERIAL, OTHER THAN SOURCE
CODE STATEMENTS, THAT DESCRIBES A SYSTEM OR ANY OF ITS COMPONENTS. (SEL) (3)
THE PRODUCTION OF ALL THE PAPER WORK NECESSARY TO DESCRIBE THE FINAL
PRODUCT. EXAMPLES INCLUDE: CROSS-REFERENCE LISTINGS, DICTIONARY LiSTINGS,
AND FLOW CHARTS. (DAN LD7) (4) THE COMPREHENSIVE DESCRIPTION OF A COMPUTER
PROGRAM IN VARIOUS FORMATS AND LEVELS OF DETAIL TO CLEARLY DEFINE ITS
CONTENT AND COMPOSITION. (NASA)

DOCUMENTATION GENERATOR
A COMPUTER PROGRAM USED TO SHOW IN DETAIL THE LOGICAL STRUCTURE OF A
COMPUTER PROGRAM, USUALLY BY PRODUCING FLOWCHARTS.

DOCUMENTATION LEVEL
SPECIFICATION OF THE DEGREE OF DETAIL AND THE FORMAT QUALITY FOR A
PARTICULAR ITEM OF DOCUMENTATION. (DAN 1153)

DOD COMMON HIGH ORDER LANGUAGE
AN EFFORT TO CREATE A SITUATION IN WHICH SOFTWARE FOR NEW EMBEDDED COMPUTER
SYSTEMS ARE DEVELOPED AND MAINTAINED USING A MINIMAL NUMBER OF
GENERAL-PURPOSE PROGRAMMING LANGUAGES, AND THAT THOSE LANGUAGES BE SUITED TO
THE APPLICATIONS, BE WIDELY USED IN DOD, AND BE WELL SUPPORTED. (DAN 251)

DOMAIN
COMPLETE SET OF ALLOWABLE VALUES OR ITEMS.

DOMAIN ERROR/FAULT
AN ERROR/FAULT IN THE CONTROL FLOW OF THE PROGRAM WHICH CAUSES A SPECIFIC
INPUT TO FOLLOW THE WRONG PATH. (DAN 842)

DREAM
(DESIGN REALIZATION, EVALUATING AND MODELING SYSTEM). AN INTERACTIVE DESIGN
TOOL. (DAN 242)

DRIVER PROGRAM
SUPERFLUOUS (THROW-AWAY) CODE NEELED TO PERFORM THE UNIT TESTING AND LOWER
LEVELS OF INTEGRATION TESTING IN A BOTTOM UP SOFTWARE DEVELOPMENT EFFORT.
(DAN 154)

DRIVERS
COMPUTER BASED INFORMAL TESTING TECHNIQUES WHICH ARE USED IN CONJUNCTION
WITH OTHER TECHNIQUES. DRIVERS ARE USED ALMOST EXCLUSIVELY DURING THE SYSTEM

36

hi D

IMPLEMENTATION PHASE OF A SOFTWARE CIVLLOP'iNT PROJECT. (DAN 154)

DUAL CODE
SOURCE CODE WRITTEN IN TWO VERSIONS BY DIFFERENT PGR GAMFLS OR DIFFERENT
PROGRAMMING TEAMS. THE SOURCE CODE MAY BE IN TiE SAME OR DIFFERENT
LANGUAGES. THE PURPOSE MAY BE TO PROVIDE AN ERROR DETECTION OR DEBUGGING
TOOL, INCREASE RELIABILITY, PROVIDE ADDITIONAL HIGH LEVEL DOCUMENTATION, OR
TO REDUCE THE PROBABILITY OF SYSTEMATIC PROGRA MING CODE ERRORS OR COMPILER
ERRORS INFLUENCING THE END RESULT. (DAN 781)

DUMP
DATA THAT HAVE BEEN DUMPED. (ANSI-X3) (2) TO WRITE THE CONTENTS OF A
STORAGE, OR OF PART OF A STORAGE, USUALLY FROM AN INTERNAL STORAGE TO AN
EXTERNAL MEDIUM, FOR A SPECIFIC PURPOSE SUCH AS TO ALLOW OTHER USE OF THE
STORAGE, AS A SAFEGUARD AGAINST FAULTS OR ERRORS, OR IN CONNECTION WITH
DEBUGGING. (ANSI-X3) (3) A RECORD OF THE STATE OF THE MEMORY SPACE USED BY A
PROGRAM AT SOME POINT IN ITS EXECUTION. A DUMP MAY INCLUDE ALL OR PART OF
THE PROGRAM'S MEMORY SPACE (INCLUDING REGISTERS). (SEL)

DYNAMIC ALLOCATION
THE ALLOCATION OF CORE SPACE FOR MEMORY REQUIRED BY AN OPERATING PROCRAM
DURING ITS EXECUTION PHASE

DYNAMIC REDUNDANCY
DYNAMIC REDUNDANCY TECHNIQUE IS USED IN CONJUNCTION WITH STATIC REDUNDANCY,
SOFTWARE SUPPORT AND HUMAN ASSISTANCE FOR FAULT DETECTION. RECOVERY ACTION
IS ACCOMPLISHED BY SWITCHING OVER TO THE STANDBY UNIT. (DAN 311)

DYNAMIC RESTRUCTURING
CHANGING SOFTWARE SYSTEM PARTS WHILE THE SYSTEM IS RUNNING. ALSO: DYNAMIC
MODIFICATION THAT NECESSARILY IMPLIES DATA CONVERSION, EITHER ON DEMAND OR
ON REQUEST. (DAN 278)

DYNAMIC SIMULATOR
A COMPUTER PROGRAM USED TO CHECK OUT A PROGRAM IN A SIMULATED ENVIRONMENT
SIMILAR TO THAT IN WHICH IT WILL RESIDE. CLCSED-LOOP EFFECTS BETWEEN
COMPUTER AND ENVIRONMENTAL MODELS ARE GAINED WHEN INPUTS AND OUTPUTS ARE
RESPONDED TO BY THE VARIOUS MODELS. THE SIMULATOR ALLOWS THE ENVIRONMENT TO
BE STABLIZED AT A SPECIFIC CONFIGURATION FOR ANY NUMBER OF RUNS REQUIRED TO
OBSERVE, DIAGNOSE, AND RESOLVE PROBLEMS IN THE OPERATIONAL PROGRAM. (DAN
134)

DYNAMIC TESTING
A TESTING SYSTEM WHICH BUILDS A COMPREHENSIVE RECORD OF A SINGLE EXECUTION
OF A PROGRAM. THIS RECORD - THE EXECUTION HISTORY- IS USUALLY OBTAINED BY
INSTRUMENTING THE SOURCE PROGRAM WITH MONITORING CODE WHOSE PURPOSE IS TO
CAPTURE INFORMATION ABOUT THE PROGRESS OF THE EXECUTION. THE EXECUTION
HISTORY IS SAVED IN A FILE, USUALLY IN TABULAR OR STATISTICAL FORM, SO THAT
AFTER THE EXECUTION TERMINATES, THE EXECUTION HISTORY CAN BE PERUSED BY THE
TESTER. (DAN 360 - MODIFIED) TESTING A PROGRAM OR SUBPROGRAM AS PART OF A
SOFTWARE SYSTEM WHILE SUBJECTING IT TO A REAL OR SIMULATED ENVIRONMENT. (DAN
1201)

EDITOR

37

A COMPUTER PROGRAM USED TO ANALYZE SOURCE PROGRAMS FOR CODING ERRORS AND TO
EXTRACT INFORMATION THAN CAN BE USED FOR CHECKING RELATIONSHIPS BETWEEN
SECTIONS OF CODE. THE EDITOR WILL SCAN SOURCE CODE AND DETECT VIOLATIONS TO
SPECIFIC PROGRAMMING PRACTICES AND STANDARDS, CONSTRUCT AN EXTENSIVE
CROSS-REFERENCE LIST OF ALL LABELS, VARIABLES, AND CONSTANTS, AND CHECK FOR
PRESCRIBED PROGRAM FORMATS. (DAN 134) (2) A COMPUTER PROGRAM WHICH PERMITS
SELECTIVE REVISION OF A SOURCE PROGRAM. (NASA)

EDUCATION
A DISCIPLINE AND DEVELOPMENT BY MEANS OF STUDY AND LEARNING. IN THIS
GLOSSARY APPLIED STRICTLY TO SOFTWARE AND SOFTWARE ENGINEERING; REFERS TO
FORMAL AND INFORMAL EDUCATIONAL PROCESSES,INCLUDING TECHNOLOGY TRANSFER.

EFFECTIVENESS
SYSTEM READINESS, AND DESIGN ADEQUACY. EFFECTIVENESS IS EXPRESSED AS THE
PROBABILITY THAT THE SYSTEM CAN SUCCESSFULLY MEET AN OPERATIONAL DEMAND
WITHIN A GIVEN TIME WHEN OPERATED UNDER SPECIFIED CONDITIONS. (DAN781)

EFFICIENCY
CODE POSSESSES THE CHARACTERISTIC EFFICIENCY TO THE EXTENT THAT IT FULFILLS
ITS PURPOSE WITHOUT WASTE OF RESOURCES. THIS IMPLIES THAT CHOICES OF SOURCE
CODE CONSTRUCTIONS ARE MADE IN ORDER TO PRODUCE THE MINIMUM NUMBER OF WORDS
OF OBJECT CODE, OR THAT WHERE ALTERNATE ALGORITHMS ARE AVAILABLE, THOSE
TAKING THE LEAST TIME ARE CHOSEN; OR THAT INFORMATION-PACKING DENSITY IN
CORE IS HIGH, ETC. OF COURSE, MANY OF THE WAYS OF CODING EFFICIENTLY ARE NOT
NECESSARILY EFFICIENT IN THE SENSE OF BEING COST-EFFECTIVE, SINCE
PORTABILITY, MAINTAINABILITY, ETC., MAY BE DEGRADED AS A RESULT. (DAN 239)
THE PROCESS WHOSE END IS TO INCREASE EFFICIENCY IS OPTIMIZATION. EFFICIENCY
IS THE RATIO OF USEFUL WORK PERFORMED TO THE TOTAL ENERGY EXPENDED. IT CAN
ALSO BE EXPRESSED AS THE EFFECTIVENESS/COST RATIO. (DAN 781)

EGOLESS PROGRAMMING
EGOLESS PROGRAMMING IS THE PROCESS OF PROGRAMMING WHICH AVOIDS INVOLVIX
PSYCHOLOGICAL MECHANISMS THAT SERVE TO PROTECT THE PROGRAMMER'S SELF IMAGE
OR SELF ESTEEM...THIS TERM WAS COINED BY WEINBERG (THE PSYCHOLOGY OF
COMPUTER PROGRAMMING, VAN NOSTRAND REINHOLD COMPANY, NEW YORK 1971).
WEINBERG FELT THAT SOME PROGRAMMERS CAN BECOME PSYCHOLOGICALLY ATTACHED TO
THEIR PROGRAMS AS EXTENSIONS OF THEMSELVES SO THAT ERRORS IN PROGRAMS FECOME
DAMAGING TO THE PROGRAMMER'S SELF-IMAGE. AN EGOLESS PROGRAMMING ENVIRONMENT
IS ONE THAT CREATES AN ATTITUDE THAT OPEN, SHARED PROGRAMMING IS GOOD. BY
MAKING CODE PUBLICLY AVAILABLE, THE OWNERHIP OF CODE IS DISCOURAGED, AND
INDIVIDUALS ARE ENCOURAGED TO WRITE CODE THAT WILL BE CLEAR AND
UNDERSTANDABLE TO OTHERS. (SET)

ELEMENT
A GROUPING OF ROUTINES WHICH PERFORMS A PRESCRIBED FUNCTION. (DAN 21)

EMBEDDED COMPUTER SYSTEMS
AN EMBEDDED COMPUTER SYSTEM IS A COMPUTER SYSTEM THAT IS INTEGRAL TO AN
ELECTROMECHANICAL SYSTEM SUCH AS A WEAPON, AIRCRAFT, SHIP, MISSILE,
SPACECRAFT, COMMAND AND CONTROL, RAPID TRANSIT SYSTEM, AND THE LIKE...
EMBEDDED COMPUTER SYSTEMS ARE CONSIDERED DIFFERENT THAN AUTOMATIC DATA
PROCESSING SYSTEMS (AEPS),PRIMARILY IN THL CONTEXT OF HOW THEY ARE
DEVELOPED, ACQUIRED, AND OPERATED IN A USING SYSTEr. THE KEY ATTRIBUTES OF

38

• , ° -

it I -

AN EMBEDDED COMPUTER SYSTEM ARE: (A) IT IS A COMPUTER SYS[EN THAT IS
PHYSICALLY INCORPORATED INTO A LARGER SYSTEM WHOSE PRIMARY FUNCTION IS NOT
DATA PROCESSING. (B) IT IS INTEGRAL TO SUCH A LARGER SYSTEM FROM A DESIGN,
PROCUREMENT, OR OPERATIONS VIEWPOINT. (C) ITS OUPUTS GENERALLY INCLUDE
INFORMATION, COMPUTER CONTROL SIGNALS, AND COMPUTER DATA. (SET)

EMBEDDED LANGUAGES
EMBEDDING IS THE (SEMANTIC) EXTENSION OF A PROGRAMMING LANGUAGE WITHOUT
ALTERING EITHER THE EXISTING FACILITIES OF THAT LANGUAGE OR ITS PROCESSOR,
PREFERABLY WRITING THE EXTENSION IN THE LANGUAGE ITSELF. (AN EMBEDDED
EXTENSION ADDS SEMANTIC CAPABILITY BY MAKING IT EASIER FOR A USER TO DO
SOMETHING WHICH WAS POSSIBLE ALREADY IN THE EXISTING LANGUAGE. I.E. A
SUBROUTINE) (DAN 448)

EMBEDDED SOFTWARE
SOFTWARE RESIDENT IN A SYSTEM DEDICATED TO A FUNCTION OTHER THAN THAT OF
DIGITAL COMPUTATION IN GENERAL. (NASA)

EMULATION
THE PROCESS OF IMITATING ONE SYSTEM WITH ANOTHER SO THAT THE IMITATING
SYSTEM ACCEPTS THE SAME DATA, EXECUTES THE SAME COMPUTER PROGRAMS, AND
ACHIEVES THE SAME RESULTS AS THE IMITATED SYSTEM. EMULATION IS OFTEN USED AS
A DEVELOPMENTAL TECHNIQUE AND IS ALSO USED AS AN APPLICATION IN WEAPONS
SYSTEMS, LOGISTICS, ETC. (DAN 300) (2) THE USE OF A HOST COMPUTER TO EXECUTE
THE MACHINE LEVEL INSTRUCTIONS OF A TARGET COMPUTER IN THE SAME MANNER AS
THE TARGET COMPUTER ITSELF WOULn, AS WITH RESPECT TO DETAILS SUCH AS WORD
LENGTH, OVERFLOW, AND TIME-SCALED OPERATION. (NASA)

ENCAPSULATION
THE PROCESS OF ISOLATING THE CHANGEABLE PARTS OF A PROGRAM IN MODULES.

ENCODING
A DESIGN AND PROGRAMMING TECHNIQUE THROUGH WHICH INFORMATION IS STORED OR
CONVEYED BY MEANS OF A REVERSIBLE MAPPING FROM THE DOMAIN IN WHICH THE
INFORMATION EXISTS ORIGINALLY INTO ANOTHER DOMAIN. (ABBOTT)

END DATE
DATE WHEN PROJECT IS SCHEDULEL TO BE COMPLETED. (SEL)

ENGINEERING
APPLIED SCIENCE CONCERNED WITH THE UTILIZATION OF RAW MATERIALS, PRODUCTS OF
TECHNOLOGY, AND PHYSICAL LAWS FOR SUPPLYING HUMAN NEEDS. A PROFESSION
CHARACTERIZED BY THE PROPENSITY TO SOLVE TECHNOLOGICAL AND RELATED PROBLEMS
WITH GIVEN CONSTRAINTS IN AN ORGANIZED, RESPONSIBLE WAY. (DAN 1153)

ENGINEERING CHANGE PROPOSAL
THE FORMAL VEHICLE BY WHICH A CHANGE IN THE BASELINE DOCUMENT IS PROPOSED.
IT DESCRIBES THE NATURE AND MAGNITUDE OF A PROPOSED CHANGE AND THE IMPACT OF
THE CHANGE ON ALL ELEMENTS OF THE SYSTEM. (DAN LD7)

ENGINEERING SCIENTIFIC SIMULATIONS
AN ENGINEERING SIMULATION IS USED TO STUDY SYSTEM CHARACTERISTICS, DEVELOP
ALGORITHMS, AND PROVIDE DATA THAT ACT AS A STANDARD FOR TESTING. THESE
PROGRAMS GENERALLY SIMULATE SUBSYSTEVS AT VARYING DEGREES OF COMPLEXITY

39

DEPENDING ON THE SUBSYSTEM BEING STUDIED OR THE USE MADE OF THE SIMULATION.
THEY GENERALLY CONSIST OF A SET OF MODULES, EACH OF WHICH IS ASSIGNED A
SPECIFIC SIMULATION FUNCTION AND IS DESIGNED WITH WELL-DEFINED INPUTS AND
OUTPUTS AND PRECISE INTERFACES. EACH MODULE PERFORMS AN ASSIGNED SIMULATION
FUNCTION TO VARY THE METHOD, SPEED OF COMPUTATION, ACCURACY, COMPLEXITY,
ETC. THE STRUCTURE CAN ENCOMPASS ALL BASIC SIMULATION CAPABILITIES FOR
SIMULATION OF CONTINUOUS AND DISCRETE SYSTEMS. (DAN 134)

ENGLISH (OR INFORMAL) SPECIFICATIONS
SPECIFICATIONS GIVEN AS READABLE ENGLISH TEXT, AS OPPOSED TO SOME FORMAL
NOTATION. (SEL)

ENTRY
ENTRY IS THE INSTRUCTION AT WHICH THE EXECUTION OF A ROUTINE BEGINS... A
"PROPER PROGRAM" IS ONE HAVING ONLY ONE ENTRY AND ONE EXIT. ADDITIONAL
ENTRIES IMPLY INCREASED COMPLEXITY BOTH IN COUPLING AND IN INTERNAL
FUNCTIONAL COMPOSITION. MULTIPLE ENTRIES ARE PROHIBITED IN STRUCTURED
PROGRAMMING GUIDELINES. (SET)

ENVIRONMENT
THE COMBINATION OF ALL EXTERNAL OR EXTRINSIC CONDITIONS THAT AFFECT THE
OPERATION OF AN ENTITY. (ANSI-X3HI)

ENVIRONMENTAL SIMULATOR
ENVIRONMENTAL SIMULATORS ARE SOFTWARE AND/OR HARDWARE TEST TOOLS WHICH
PROVIDE REALISTIC INPUT SIGNALS AT EQUIPMENT INTERACES AND RESPOND, IN A
DYNAMIC MANNER, TO OUPUT SIGNALS GENERATED BY THE SOFTWARE OR EQUIPMENT
UNDER TEST... AN ENVIRONMENTAL SIMULATOR SHOULD BE DESIGNED SO THAT IT
SIMULATES THE RUN-TIME ENVIRONMENT OF THE TEST ARTICLE SOFTWARE.
ENVIRONMENTAL SIMULATORS MAY BE ANALOG, DIGITAL, OR HYBRID, DEPENDING ON THE
TYPE AND DEGREE OF TESTING TO BE ACCOMPLISHED. TEST ARTICLE SOFTWARE MAY BE
TEMPORARILY SPECIALLY INSTRUMENTED TO PROVIDE ADDITIONAL TEST DATA WHEN RUN
WITH AN ENVIRONMENTAL SIMULATOR. (SET) (2) A COMPUTER PROGRAM USED TO PERMIT
TESTING OF OPERATIONAL PROGRAMS ON A HOST COMPUTER. THE OPERATIONAL PROGRAMS
RUN UNDER SIMULATED CONDITIONS AS IF THEY WERE OPERATING WITHIN THE
REAL-TIME CONTROL PROGRAM OF A MACHINE TO WHICH ALL OF THE DEVICES
CONSTITUTING THE ULTIMATE SYSTEM ARE ATTACHED. THE SIMULATOR PROGRAM
CONTAINS EXPANSIONS OF ALL CONTROL PROGRAM MACROS THAT MODIFY THE ENTRY
BLOCK AND OTHER WORKING STORAGE IN THE SAME MANNER AS THE MACROS IN THE
ACTUAL CONTROL PROGRAMS. (DAN 134)

EQUATE PROGRAM
A COMPUTER PROGRAM THAT LISTS ALL EQUIVALENCES FOUND IN EXAMINED CODE AND
PRINTS WARNINGS WHEN MULTIPLE EQUIVALENCES ARE FOUND. (DAN 134)

EQUIVALENCE OF MONITOR IMPLEMENTATIONS
THE PROCESS OF ANALYZING MONITOR IMPLEMENTATION CONVENTIONS BY FORMAL
LOGICAL PROOFS, MAKING RIGOROUS COMPARISONS TO PROVE THAT ONE CONVENTION MAY
OR MAY NOT BE SUBSTITUTED FOR ANOTHER WHIIE PRESERVING THE CLASS OF PROVABLE
PROGRAM PROPERTIES. OR- 2 OR MORE MONITOR IMPLEMENTAIIONS ARE EQUIVALENT IF
ONE CONVENTION MAY BE SUBSTITUTED FOR ANOTHER WHILE PRESERVING THE CLASS OF
PROVABLE PROGRAM PROPERTIES. (DAN 421)

ERROR

40

II .' /

AN ERROR IS A DISCREPANCY WHICH RESULTS IN SOFTWARE CONTAINING A FAULT. (2)
AN ERROR IS AN ACTION WHICH RESULTS IN SOFTWARE CONTAINING A FAULT. THE ACT
OF MAKING AN ERROR INCLUDES OMISSION OR MISINTERPRETATION OF USER
REQUIREMENTS IN THE SOFTWARE SUB-SYSTEM SPECIFICATION, INCORRECT TRANSLATION
OR OMISSION OF A REQUIREMENT IN THE DESIGN SPECIFICATION AND PROGRAMMING
ERRORS. ALSO, PROGRAMMING ERRORS INCLUDE: ALGORITHMIC (FAILS PROOF OF
CORRECTNESS), ALGORITHMIC APPROXIMATION (ACCURATE FOR SOME INPUTS,
INACCURATE FOR OTHERS), TYPOGRAPhICAL (E.G., I FOR 1,* FOR **, ETC.), DATA
STRUCTURE (E.G., DIMENSIONS, LINKAGES INCORRECT), SEMANTIC (COMPILER WORKS
DIFFERENTLY THAN PROGRAMMER BELIEVES), SYNTAX (E.G., PARENTHESES OMITTED),
LOGIC (E.G., OR FOR XOR), INTERFACE (I/O MISMATCH), TIMING (E.G., EXECUTION
TIME OF INSTRUCTION SEQUENCE GREATER THAN REQUIRED). (SET) (3) A DISCREPANCY
BETWEEN A SPECIFICATION AND ITS IMPLEMENTATION. THE SPECIFICATION MIGHT BE
REQUIREMENTS, DESIGN SPECIFICATIONS, CODING SPECIFICATIONS, ETC. (SEL) (4)
(ISO) A DISCREPANCY BETWEEN A COMPUTED, OBSERVED, OR MEASURED VALUE OR
CONDITION AND THE TRUE, SPECIFIED, OR THEORETICALLY CORRECT VALUE OR
CONDITION. (ANSI-X3)

ERROR ANALYSIS
ANALYSIS OF ERRORS WITH THE PURPOSE OF TPACING ERRORS TO THEIR SOURCES IN
BOTH LIFE CYCLE PHA"I AND Ir C(ONDITION'S WHICH RESULT IN ERRORS BEING MADE.

ERROR CATEGORIES
SOFTWARE EPRORS INCLUDING THE FOLLO IG: COMPUTATIUNAL ERRORS, LOGIC ERRORS,
DATA INPUT ERRORS, DATA HANDLING LRRORS, [ATA OUTPUT ERRORS, INTERFACE
ERRORS, ARRAY PROCESSING ERRORS, LATA BASE ERRORS, OPERATION ERRORS, PROGRAM
EXECUTION ERRORS, DUCUMENTATIOD ERRORS. (DAN 226)

ERROR CATEGORIZATION
THE PROCESS OF SELECTING CATEGORIES ANC ASSIGNING VARIOUS ERRORS TO THOSE
CATEGORIES; REFERS ESPECIALLY TO ETHOLS OF SELECTING CATEGORIES. (FULL
LISTING OF CATEGORIFS AND SUBCATEGORIES, 14-5O (DAN 295))

ERROR CONFINEMENT
HARDWARE MECHANISM(S) WHICH DO NOT PRLVLNT OCCURRLNCES OF ERRORS BUT DO
LIMIT THEIR INCIDENCE ON THE PROTLCTEL LNITIES OF A SYSTEM. (DAN 209)

ERROR CORRECTION
THE PROCESS OF CORRECTING A SOFTWARE IRRoR. THE CORRECTIVE ACTION NAY BE
TAKEN BY THE PROGRAMMER, (PHASE 1) OR THE CORRECTIVE ACTIO), MAY BE TAKEN BY
A SYSTEM ANALYST OR SYSTL, DESIGNER (P[AE 2) (DAN 296)

ERROR CORRECTION COSTS
THE COST OF CORRECTING ERR(RS IN StE TWAP[. T111 ((ST IS [,IRLCTLY RELATED TO
THE PHASE IN WHICH THE ERROR IS DISCUVLRE[; THE LATER IN THE DEVELOPMENT
CYCLE, THE HIGHER THE CCST IS LIKELY TO BE.

ERROR CORRECTION LIMIT POLICIES
POLICIES LESIGNED TO DETERMINE THE OPTIMUM TIME VALUE THAT MINIMIZE THE LONG
RUN AVERAGE COST OF DEBUGGING AT 2 LEVELS - CORRECTIVE ACTION UNDERTAKEN BY
THE PROGRAMMER (PHASE 1); AND ACTION UNDERTAKEN BY A SYSTEM ANALYST OR
SYSTEM DESIGNER (IPAS1 2), If THE ERROR IS NOT CORRECTED IN PHASE (1). (DAN
298)

41

ERROR DATA
INDEXING TERM. DATA RELATING TO SOFTWARE ERRORS; DATA MAY INCLUDE A
DESCRIPTION OF TYPE OF ERROR, WHERE IN THE SOFTWARE DEVELOPMENT CYCLE THE
ERROR WAS MADE, WHEN DISCOVERED, WHEN CORRECTED, AND THE SOLUTION.

ERROR DATA ACQUISITION
THE PROCESS AND/OR METHODS OF OBTAINING SOFTWARE ERROR DATA. COMMON VEHICLES
ARE REPORTING FORMS, INTERVIEWS, AUTOMATIC COLLECTION OF DATA BY THE
COMPUTING SYSTEM, CR BY USE OF AUTOMATIC DATA ANALYSIS ROUTINES.

ERROR DATA ANALYSIS
ANALYSIS OF ERROR DATA MAY INCLUDE THE CATEGORIZATION OF ERRORS INTO TYPES,
COMPUTATION OF THE MEAN TIMES TO DISCOVERY OF THE VARIOUS TYPES OF ERRORS,
THE PERCENTAGE OF ERRORS FALLING INTO EACH CATEGORY, THE PERCENTAGE OF
ERRORS TRACEABLE TO EACH STEP OF THE DEVELOPMENT PHASE OF THE SOFTWARE LIFE
CYCLE, BY TYPE AS WELL AS BY NUMBER, ERROR RATES RELATED TO FUNCTIONAL AREA
OF THE SOFTWARE, AND MEAN TIME TO CORRECT THE VARIOUS TYPES OF ERRORS AND/OR
COST OF CORRECTING ERRORS. ANALYSIS MAY BE DONE MANUALLY OR BY USE OF
AUTOMATED DATA ANALYSIS ROUTINES.

ERROR DETECTION
THE PROCESS OR TECHNIQUE, USED IN IMPLEMENTATION OF FAULT-TOLERANT SOFTWARE,
OF INSERTING EXTRA CODE WHICH EXPLICITLY TESTS KEY VARIABLES FOR
CORRECTNESS.

ERROR DETECTION CODE
A CODE IN WHICH EACH EXPRESSION CONFORMS TO SPECIFIC RULES OF CONSTRUCTION
SO THAT IF CERTAIN ERRORS OCCUR IN AN EXPRESSION THE RESULTING EXPRESSION
WILL NOT CONFORM TO THE RULES OF CONSTRUCTION AND THUS THE PRESENCE OF THE
ERRORS IS DETECTED. SYNONYMOUS WITH SELF-CHECKING CODE. (ANSI-X3)

ERROR DETECTION PROCESS
THE CARRYING OUT OF THOSE ACTIVITIES WHICH DETERMINE THAT SOFTWARE CONTAINS
ONE OR MORE SPECIFIC MANIFESTATIONS OF AN ERROR.

ERROR ISOLATION
TECHNIQUES USED TO IMPLEMENT FAULT-TOLERANT COMPUTING. THE BASIC STRATEGY
USED IS THE ATTEMPT TO ISOLATE ERRORS TO A MINIMAL PART OF THE SOFTWARE
SYSTEM SO THAT IF AN ERROR IS ENCOUNTERED, THE TOTAL SYSTEM DOES NOT BECOME
INOPERABLE; EITHER ISOLATED FUNCTIONS WITHIN THE SYSTEM BECOME INOPERABLE OR
PARTICULAR USERS CAN NO LONGER CONTINUE TO FUNCTION. OTHER ERROR ISOLATION
TECHNIQUES ARE CONCERNED WITH PROTECTING EACH PROGRAM IN THE SYSTEM FROM
ERRORS IN OTHER PROGRAMS. (DAN 286)

ERROR MANAGEMENT
AN AUTOMATED PROCEDURE FOR RELIABILITY ESTIMATION USING ANY OR ALL OF 6
BASIC PROCEDURES A) MANUAL REGISTRATION OF ERROR INFORMATION B) AUTOMATIC
REGISTRATION OF ERROR INFORMATION C) STATUS REGISTRATION OF ERROR CORRECTION
ACTIVITIES, D) INQUIRY FOR STATISTICAL ERROR INFORMATION OR STATUS
INFORMATION OF EACH ERROR, E) AUTHORIZATION OF ERROR F) RELIABILITY
ESTIMATION. (DAN 246)

ERROR MODELING
THE PROCESS OF DEVELOPING A MODEL OR MODELS FOR SOFTWARE ERROR PREDICTION OR

42

RELIABILITY ASSESSMENT. (DAN 296)

ERROR MODELS
MATHEMATICAL MODELS FOR PREDICTING SUCH QUANTITIES AS THE NUMBER OF
REMAINING ERRORS IN A SOFTWARE PACKAGE, THE TIME TO ACHIEVE A DESIRED
RELIABILITY LEVEL AND A MEASURE OF THE SOFTWARE RELIABILITY. (DAN 296)

ERROR PREDICTION
THE PROCESS OF PREDICTING SUCH QUANTITIES AS NUMBER OF ERRORS, TYPES OF
ERRORS, AND TIMES TO DISCOVERY OF THE NEXT N ERRORS IN A SOFTWARE PACKAGE.
(DAN 296)

ERROR PREDICTION MODELS
M;ATHEMATICAL MODELS FOR PREDICTING THE NUMBER OF REMAINING ERRORS IN A
SOFTWARE PACKAGE. (DAN 296) SEE ALSO (DAN 239) PG 511 AND 510.

ERROR PREVENTION
THE CAUSE OF AN ERROR IS A DISCREPANCY BETWEEN THE DIFFICULTY OF THE PROBLEM
AND THE ADEQUACY OF THE MEANS APPLIED. PREVENTION OF ERRORS IS THEN DEFINED
AS THE APPLICATION OF ALL MEASURES CAPABLE OF REDUCING THIS DISCREPANCY.
(DAN 559)

ERROR RECOVERY
THE ABILITY OF A SYSTEM TO RETURN TO A RELIABLE UP STATE AFTER A FAILURE
(DAN 476)

ERROR SEVERITY
A DESCRIPTION (NUMERICAL OR VERBAL) OF AN ERROR'S EFFECT UPON THE RESULTS OF
EXECUTING A PROGRAM IN COMPARISON TO THE EXPECTED RESULTS. SEE ALSO: MAJOR
ERROR, MINOR ERROR

ESTIMATING
DETERMINING WHAT LEVELS OF EFFORT AND WHAT RESOURCES NEED TO BE APPLIED TO
ACCOMPLISH THE DESIRED RESULTS. ALSO SEE LUDGETING AND ESTIMATING.

EUCLID
A PASCAL-BASED LANGUAGE WHICH IS USED FOR WRITING SYSTEM PROGRAMS THAT ARE
TO BE VERIFIED. (DAN 389) (BY AUTOMATED MEANS)

EVENT-BASED MODEL
A MODEL WHICH DESCRIBES NON-SEQUENTIAL BEHAVIOR OR THE INTERRELATIONSHIPS
BETWEEEN THE BEHAVIORS OF SEVERAL COMPONENTS OF A SOFTWARE SYSTEM IN TERMS
OF SIGNIFICANT OCCURENCES DURING SYSTEM OPERATION (EVENTS). AN EVENT-BASED
MODEL CAN BE USED AS A DESIGN OR SPECIFICATION TECHNIQUE.

EVOLUTION
EVOLUTION IS A DESIGNED CHARACTERISTIC OF A SYSTEM DEVELOPMENT WHICH
INVOLVES GRADUAL STEPWISE CHANGE. A COMPLEX SYSTEM CAN BE IMPLEENTED IN
SMALL STEPS; EACH STEP CAN HAVE A CRITERION FOR SUCCESSFUL ACHIEVEMENT AS
WELL AS A "RETREAT POSSIBILITY" TO A PREVIOUS SUCCESSFUL STEP IN THE EVENT
OF FAILURE. (DAN 781-MOD) (2) COMPARE WITH BUILDS. (3) SEE ALSO
IMPLEMENTATION PHASE, AND SYSTEM INTEGRATION.

EVOLUTIONARY SYSTEMS

43

-L-3

SYSTEMS WHICH ARE DESIGNED TO BEGIN AS A MODEST SET OF FUNDAMENTAL
CAPABILITIES BUT ARE ABLE TO GROW PAINLESSLY INTO MORE COMPLEX
CONFIGURATIONS AS NEW MISSION REQUIREMENTS ARISE IN THE FUTURE. PRINCIPLES
CONSIDERED FUNDAMENTAL: VIRTUALIZATION, INTERFACE CONTROL, INTEROPERABILITY
AND AUTOMATABILITY. (DAN 346)

EXECUTE
THIS WORD IS TO BE AVOIDED (ANSI-X3H1)

EXECUTION
EXECUTION OF A PROGRAM CAUSES THE OPERATIONS IN ITS ALGORITHM TO BE
PERFORMED IN SOME ORDER. THE ORDER IN WHICH AN ALGORITHM'S OPERATIONS ARE
PERFORMED IS DETERMINED BY THE CONTROL STRUCTURES AND CONTROL STATEMENTS
USED TO ORGANIZE THE OPERATIONS. A PROGRAM IS EXECUTED BY A PROCESSOR.
(ABBOTT)

EXECUTION ANALYSIS
THE AUTOMATED MONITORING OF THE COMPUTER BASED SOFTWARE TESTING ACTIVITIES,
COLLECTION OF DATA FROM THESE TESTING ACTIVITIES, AND SUBSEQUENTLY
PREDICTING, BY MANUALLY ANALYZING THE DATA, THE DURATION AND COST OF TESTING
AND THE QUALITY O THE SOFTWARE PRODUCT. OTHER TERMS USED IN THE LITERATURE
REFERRING TO THIS TECHNIQUE OR VARIATIONS OF THIS TECHNIQUE INCLUDE CODE
ANALYZER, CODE AUDITOR, PROGRAM EVALUATOR, AND PRODUCT ASSURANCE EVALUATOR.
(DAN 154)

EXECUTION TIME
THE ACTUAL PROCESSOR TIME UTILIZED IN EXECUTING A PROGRAM. SEE ALSO: ERROR
DATE PARAMETERS, EXECUTION TIME THEORY, FAILURE DATA.

EXECUTION TIME THEORY
A WAY FOR THE COMPUTATION CENTER MANAGER TO ACCURATELY MEASURE AND MONITOR
THE RELIABILITY OF SOFTWARE COMPONENTS. PREDICTED ON THE CONCEPT THAT
EXECUTION TIME IS THE BEST PRACTICAL MEASURE FOR CHARACTERIZING THE STRESS
PLACED ON SOFTWARE, PROVIDED THAT THE EXECUTION ENVIRONMENT IS
REPRESENTATIVE. (DAN 244)

EXECUTIVE PROGRAM
A COMPUTER PROGRAM WHICH INVOKES AND CONTROLS BOTH HARDWARE AND SOFTWARE
ELEMENTS ATTENDANT TO THE EXECUTION OF AN APPLICATIONS PROGRAM. (NASA) (2) A
CENTRALIZED SUBPROGRAM WHICH PROVIDES SYSTEM USE FUNCTIONS SUCH AS CONTROL
OF INPUT/OUTPUT AND SCHEDULING OF USE OF THE PROCESSOR(S) AND ALLOCATION OF
COMPUTER RESOURCES INCLUDING PROCESSING TIME, MEMORY ACCESS, AND INTERRUPT
PROCESSOR SERVICES REQUIRED BY APPLICATION SUBPROGRAMS AND THEIR PROGRAMMED
TASKS. (DAN 1201)

EXIT
AN EXIT IS THE PLACE WHERE CONTROL LEAVES A ROUTINE. (SET)

EXPONENTIAL DISTRIBUTION
INDEXING TERM. REFERS TO THE MATHEMATICAL METHODOLOGY WHICH IS USED TO
CONSTRUCT, OR WH" " IS THE FORM ASSUMED BY, A PARTICULAR MODEL.

EXPOSURE
THE DECREE OF PROTECTION WHICH HAS BEEN PROVIDED FOR AN INDIVIDUAL OBJECT.

44

m ">

(DAN 277)

EXPRESSION OF A PROGRAM
A STATEMENT OF A PROGRAM IN A LANGUAGE. THE EXPRESSION OF A PROGRAM IN A
PROGRAMMING LANGUAGE IS AN ORGANIZED COLLECTION OF SYMBOLS WHICH, ACCORDING
TO THE LOGICAL, SYNTACTIC AND SEMANTIC RULES OF THE PROGRAMMING LANGUAGE,
CHARACTERIZE THE ALGORITHM AND CATA OBJECTS WHICH MAKE UP THE PROGRAM.
(ABBOTT)

EXTENSIBILITY
THE EXTENT TO WHICH SOFTWARE ALLOWS NEW CAPABILITIES TO BE ADDED AND
EXISTING CAPABILITIES TO BE EASILY TAILORED TO USER NEEDS.

EXTERNAL ENVIRONMENT
THE COMBINATION OF HARDWARE AND SOFTWARE USED TO MAINTAIN AND EXECUTE THE
SOFTWARE, INCLUDING THE COMPUTER ON WHICH THE SOFTWARE EXECUTES, THE
OPERATING SYSTEM FOR THAT COMPUTER, SUPPORT LIBRARIES, TEXT EDITORS,
COMPILER, ETC. (SEL)

FAILURE
A SOFTWARE FAILURE IS AN UNACCEPTABLE RESULT PRODUCED DURING THE OPERATION
OF THE COMPUTER PROGRAM. A FAILURE OCCURS WHEN A FAULT IS EVOKED BY SOME
INPUT DATA.

FAILURE CATEGORIZATION
ASSIGNING A FAILURE TO A DESCRIPTIVE CATEGORY BASED UPON THE TIME IN THE
LIFE CYCLE THE FAILURE OCCURRED,THE MANIFESTATION OF THE FAILURE, ANE THE
CAUSE OF THE FAILURE. BY "CAUSE" IS MEANT THE ERROR WHICH WAS AT THE ROOT OF
THE FAILURE.

FAILURE DATA
INPUTS TO A RELIABILITY ESTIMATION PROGRAM WHICH USUALLY INCLUDE A SET OF
EXECUTION TIME INTERVALS BETWEEN FAILURES ALONG WITH THE NUMBER OF DAYS FROM
THE START OF TESTING ON WHICH THE FAILURES OCCURRED, MEAN TIME BETWEEN
FAILURES, EXECUTION TIME BETWEEN FAILURES.

FAILURE RATE
NUMBER OF FAILURES DIVIDED BY CPU TIME FOR THE INTtRVAL. (DAN 226)

FAILURE RATIO
NUMBER OF FAILURES PER CALENDAR INTERVALS DIVIDED BY TOTAL NUMBER OF RUNS.
(DAN 226)

FAIRNESS
A QUEUING SYSTEM IS CALLED FAIR IF, WHENEVER A PROCESS IS DELAYED ON ANY
QUEUE, THERE IS A POSSIBLE FUTURE STATE OF THE SYSTEM IN WHICH THAT PROCESS
IS ON NONE OF THE QUEUES. (DAN 420)

FAST (FORTRAN ANALYSIS SYSTEM)
A SECOND GENERATION PROGRAM ANALYZER DESIGNED TO SUPPORT PROGRAM
DEVELOPMENT, DEBUGGING AND MAINTENANCE. ITS THREE MAJOR ELEMENTS ARE: 1) A
SCANNER/PARSER TO CONVERT PROGRAM TEXT INTO A PROGRAM DATAPASE, 2) A DATA
BASE SYSTEM WITH DATA STRUCTURES AND RETRIEVAL CAPABILITIES TO SUPPORT THE
PROGRAM ANALYSIS QUERY SET, AND 3) A COMMAND/QUERY LANGUAGE INTERPRETER TO

45 "i

SATISFY QUERIES AND fO GENERATE ANALYSES. (DAN 261)

FAULT
A FAULT IS A SPECIFIC MANIFESTATION OF AN ERROR. THE FAULT IS EVIDENCED WHEN
ENTRY OF SOME INPUT DATA RESULTS IN THE PROGRAM FAILING TO CORRECTLY PERFORM
THE REQUIRED FUNCTION. AN ERROR MAY BE THE CAUSE OF SEVERAL FAULTS. (2) A
FAULT IS A MANIFESTATION OF AN ERROR IN PROGRAM CODE... THE FAULT IS
EVIDENCED WHEN ENTRY OF SOME INPUT DATA RESULTS IN THE PROGRAM FAILING TO
CORRECTLY PERFORM THE REQUIRED FUNCTIUN. FAULT AND "BUG" ARE SYNONYMOUS.
(SET)

FAULT AVOIDANCE
SET OF PROCEDURES LEADING TU ATTAINMENT OF RELIABLE SYSTEMS: INCLUDES
ACQUISTION OF MOST RELIABLE COf;PONLNTS WITHIN THE GIVEN COST AND PERFORMANCE
CONSTRAINTS, USE OF THOROUGHLY REFINED TECHNIQUES FOR THE INTERCONNECTION OF
COMPONENTS AND ASSEMBLY OF SUBSYSTEMS, PACKAGING OF HARDWARE TO SCREEN OUT
EXPECTED FORMS OF INTERFERENCE, AND CARRYING OUT OF COMPREHENSIVE TESTING TO
ELIMINATE HARDWARE AND SOFTWARE DESICN FAULTS. (DAN 236)

FAULT TOLERANCE
USE OF PROTECTIVE REDUNDANCY. A SYSTEM CAN BE DESIGNED TO BE FAULT-TOLERANT
BY INCORPORATING ADDITIONAL COMPONENTS AND ABNORMAL ALGORITHMS WHICH ATTEMPT
TO INSURE THAT OCCURRENCES OF ERRONEOUS STATES DO NOT RESULT IN LATER SYSTEM
FAILURES-A QUANTITATIVE PREDICTION OF SYSTEM RELIABILITY. (DAN 236)

FAULT-TOLERANT SOFTWARE
A SOFTWARE STRUCTURE EMPLOYING FUNCTIONALLY REDUNDANT ROUTINES WITH
CONCURRENT ERROR DETECTION, AND PROVISIONS TO SWITCH FROM ONE ROUTINE TO A
FUNCTIONAL ALTERNATE IN THE EVENT OF A DETECTED FAULT. (DAN 225)

FIDELITY
FIDELITY IS DEFINED AS THE ACCURACY WITH WHICH A GIVEN ALGORITHM IS
MECHANIZED FOR A GIVEN OPERATING SYSTEM AND HARDWARE SYSTEM. (DAN 781)

FILE
A COLLECTION OF DATA TREATED AS A UNIT. (ANSI-X3HI)

FILE MANAGEMENT
THE ACTION OF PROVIDING AND CONTROLLING ACCESS TO FILES, DIRECTING THEIR
MAINTENANCE AND CONTROLLING THE RESOURCES USED. (ANSI-X3HI)

FILE MODIFICATION
CHANGING THE INFORMATION IN A FILE, I.E. DELETING, UPDATING, EXTENDING.

FILE MODIFICATION PROTECTION
CONSTRAINT ON A FILE SYSTEM WHICH RESTRICTS THE FILE SYSTEM FROM MODIFYING
THE FILL IN ANY WAY.

FIRMWARE
HARD-WIRED PROGRAMS WHICH INTERPRET MACHINE LANGUAGE INSTRUCTIONS AND DIRECT
THE CORRESPONDING ELEMENTAL MACHINE OPERATIONS. (NASA) (2) AN EXECUTABLE
DIGITAL PROGRAM WHICH IS FIXED IN THE MEMORY OF THE COMPUTING DEVICE WHICH
WILL EXECUTE IT. (DAN 1201)

46

, &*•

FLAG
A SIMPLE DATA STRUCTURL THAT [IRLCTS THE FLOW OF CONTROL IN A PROGRAM. IF IT

HAS A RANGE OF ONLY TWO VALUES, IT IS SOMETIMES CALLED A "BOOLEAN" CR
"SWITCH". FLAGS USED SOLELY TO PEF:MIT A PROGRAM TO HAVE STRUCTURED CONTROL
FLOW ARE CALLED STRUCTURE FLAGS. (DAN 1153)

FLEXIBILITY
THE TERM FLEXIBILITY IS USUALLY USED TO DENOTE THE EXISTENCE OF A RANGE CF
CHOICES AVAILAbLE T A PROGRAMMER OR IMPLEMENTER - THE MORE CHOICES, THE
GREATER THE FLEXIBILITY. FLEXIBILITY IS SOMETIMES REFERRED TO AS
"GENERALITY" (DAN 470) (2) FLEXIBILITY IS USEFUL COMPLEXITY. (DAN 781)

FLIGHT CRITICAL
ESSENTIAL TO SAFETY CR FLYABILITY OF AN AIRPLANE. (NASA)

FLIGHT TEST
A TECHNIQUE USED TO DEMONSTRATE HARDWARE AND SOFTWARE PERFORMANCE IN ACTUAL
SYSTEM OPERATION. (DAN 134)

FLIGHT-PHASE CRITICAL
ESSENTIAL TO SAFETY OR FLYABILITY OF AN AIRPLANE IN ONLY CERTAIN FLIGHT
PHASES OR ENVIRONMENTS. (NASA)

FLOW CHART
A GRAPHICAL REPRESENTATION FOR THE DEFINITION, ANALYSIS, OR SOLUTION OF A
PROBLEM, IN WHICH SYMBOLS ARE USED TO REPRESENT OPERATIONS, DATA, FLOW,
EQUIPMENT, ETC. (ANSI-X3) (2) A DIACRAM OF A PROGRAM'S LOGIC FLOW. (DAN LD7)

FLOW OF CONTROL
FLOW OF CONTROL IS THE ORDERED SEQUENCE OF OPERATIONS PERFORMED IN TH"E
EXECUTION OF A SERIES OF ALGORITHMS.. .THE CONTROL STRUCTURES OF A HIGH-LEVEL
PROGRAMMING LANGUAGE (FORTRAN, COBOL, PL/1, ETC.) ALLOW SEQUENTIAL
PROCESSING AND BRANCHING. EXAMPLES OF FLOW-OF-CONTROL STATEMENTS IN A
HIGH-LEVEL PROGRAMMING LANGUAGE ARE: GOTO, CASE, WHILE, IF-THEN-ELSE,
ETC ALSO SEE - GOTO CONTROL STRUCTURES. (SET)

FLOWCHARTER
A COMPUTER PROGRAM USED TO SHOW IN DETAIL THE LOGICAL STRUCTURE OF A
COMPUTER PROGRAM. THE FLOW IS DETERMINED FROM THE ACTUAL OPERATIONS AS
SPECIFIED BY THE EXECUTABLE STATEMENTS, NOT FROM COMMENTS. THE FLOWCHARTS
GENERATED CAN BE COMPARED TO FLOWCHARTS PROVIDED IN THE COMPUTER PROGRAM
SPECIFICATION TO SHOW DISCREPANCIES AND ILLUMINATE DIFFERENCES. (DAN 134)

FLOWCHARTING TOOLS
UTILITY PROGRAMS WHICH AUTOMATICALLY DRAW PROGRAM FLOWCHARTS DIRECTLY FROM
SOURCE CODE. (DAN 142)

FOREIGN DEBUG
FOREIGN DEBUGGING (FD) IS AN IN-DEPTH PROGRAM REVIEW CONDUCTED BY SOMEONE
OTHER THAN THE IMPLEMENTOR TO FIND PROGRAM ERRORS AND IMPROVE PROGRAM
RELIABILITY...A NON-IMPLEMENTOR LEARNS THE INTERNAL CHARACTERISTICS OF THE
PROGRAM TO BE DEBUGGED, CONSTRUCTS APPROPRIATE TEST CASES, AND DEBUGS JUST
AS THE IMPLEMENTOR WOULD..ALSO SEE - PEER CODE REVIEW. (SET)

47

FORMAL SPECIFICATIONS
SOME SPECIFICATION TECHNIQUE BASED UPON A STRICT SET OF RULES FOR DESCRIBING
THE SPECIFICATION AND USUALLY INVOLVING THE USE OF AN UNAMBIGUOUSLY DEFINED
NOTATION (E.C., MATHEMATICAL FUNCTIONS, FORMAL PDL, ETC.). (SEL)

FORMAL TESTING
TESTING CONDUCTED ACCORDING TO TEST PROCEDURES WHICH ARE DOCUMENTED AND
APPROVED BY CONTRACTOR AND CUSTOMER. (DAN 21) (2) TESTING PERFORMED IN
ACCORDANCE WITH CUSTOMER-APPROVED TEST PLANS. THIS TYPE OF TESTING VERIFIES
THAT THE SOFTWARE SYSTEM IS OPERATING ACCORDING TO THE REQUIREMENTS OF THE
DEVELOPMENT SPECIFICATIONS. FORMAL TESTING IS USUALLY PERFORMED DURING THE
SYSTEM EVALUATION PHASE OF SOFTWARE DEVELOPMENT. TERMS USED IN THE
LITERATURE TO DESCRIBE THIS TESTING INCLUDE: (1) SYSTEM INTEGRATION TESTING,
(2) PROTOTYPE TESTING, (3) SYSTEM TESTING, (4) ACCEPTANCE TESTING. (DAN 154)

FORMAL VALIDATION
MATHEMATICAL TECHNIQUES FOR PROVING PROGRAM CORRECTNESS. (DAN LD4) (2)
SYNONYM FOR CORRECTNESS PROOF.

FORTRAN
(FORMULA TRANSLATION) A PROGRAMMING LANGUAGE PRIMARILY USED TO EXPRESS
COMPUTER PROGRAMS BY ARITHMETIC FORMULAS. (ANSI-X3) (2) A NON-BLOCK
STRUCTURED HOL IN WIDESPREAD USE FOR TECHNOLOGICAL APPLICATIONS. (NASA)

FUNCTION
A MATHEMATICAL NOTATION USED TO SPECIFY THE SET OF INPUTS, THE SET OF
OUTPUTS, AND THE RELATIONSHIP BETWEEN THE INPUTS AND OUTPUTS. (SEL) (2) A
FUNCTION IS A SUBPROGRAM WHICH RETURNS A PARTICULAR VALUE THAT IS DEPENDENT
UPON THE INDEPENDENT VALUE(S) GIVEN WITH THE CALLING INSTRUCTION. ..NORMALLY
THE VALUE RETURNED BY A FUNCTION IS DIRECTLY ASSOCIATED WITH THE NAME OF THE
FUNCTION SUCH AS SIN(K). (SET) (3) A GROUPING OF ROUTINES WHICH PERFORMS A
PRESCRIBED FUNCTION. (DAN 21) (4) A SUB-DIVISION OF PROCESSES. (DAN LD7) (5)
IN COMPUTER PROGRAMMING, SYNONYM FOR PROCEDURE. (6) A PURPOSEFUL ROLE OR
ACTION BASED ON A SPECIFIED RELATIONSHIP BETWEEN CIRCUMSTANCES AND
RESPONSES. (NASA) (7) THE NATURAL, REQUIRED, OR EXPECTED ACTIVITY OF A
PROGRAM ELEMENT IN CARRYING OUT A PROGRAM REQUIREMENT. (DAN 1201)

FUNCTION TESTING
THE PURPOSE OF THE FUNCTION TEST IS TO FIND DISCREPANCIES BETWEEN THE
PROGRAM AND ITS EXTERNAL SPECIFICATION. (DAN 286) SEE ALSO: FUNCTIONAL
TESTING

FUNCTIONAL INTEGRATION
JUDICIOUS COMBINATION OF RELATED INFORMATION, PPOCESSES, OR OPERATIONS INTO
A SYSTEM WHICH REALIZES FUNCTIONAL OBJECTIVES MORE EFFECTIVELY. (NASA)

FUNCTIONAL PROGRAMMING
A PROGRAMMING METHOLOLOGY AND THEORY OF PROGRAMMING BASED UPON THE SEMANOL
DEFINITION OF A PROGRAM, "A PROGRAM P SPECIFIES A COMPUTABLE FUNCTION F ON
THE SET E OF INPUTS SPECIFIED BY THE INPUT EXPRESSIONS IN THE PROGRAM".
FUNCTIONAL PROGRAMMING INVOLVES EXPLICIT DEFINITION OF THE FUNCTIONAL
REQUIREMENTS OF THE PROGRAM AND PROVIDES A METHOD FOR DESIGNING THE PROGRAM
SO THAT IT CONTAINS ONLY THE FUNCTIONAL CAPABILITIES CORRESPONDING TO THE
FUNCTIONAL REQUIREMENTS AND NO OTHERS. (DAN 233)

48

,A

, #

FUNCTIONAL REQUIREMENTS
THAT PART OF THE REQUIREMENTS WHICH DESCRIBE THE FUNCTIONS THE SYSTEM tST
PERFORM. (DAN 141)

FUNCTIONAL REQUIREMENTS DOCUMENT (FRD)
A DOCUMENT STATING THE ESSENTIAL TECHNICAL FEATURES OF A NEEDED DATA
PROCESSING CAPABILITY, ALONG WITH TECHNICAL CONSTRAINTS AND CONDITIONS TO BE
MET, AND CRITERIA FOR ACCEPTABLE DELIVERY THAT CAN BE APPENDED TO OR MADE A
PART OF THE SOFTWARE REQUIREMENTS DOCUMENT (SRD). (DAN 1153).

FUNCTIONAL SPECIFICATIONS
A SPECIFICATION OF A COMPONENT AS A SET OF FUNCTIONS DEFINING THE OUTPUT FOR
ANY INPUT. THE SPECIFICATION EMPHASIZES WHAT THE PROGRAM IS TO DO, RATHER
THAN HOW TO DO IT. HOWEVER, AN ALGORITHMIC SPECIFICATION CAN BY CONSIDERED
FUNCTIONAL IF IT IS NUT USED TO DICTATE THE ACTUAL ALGORITHM TO BE USED.
(SEL) (2) DESCRIBE A SYSTEM IN TERMS OF ITS PRINCIPAL FUNCTIONS AND THEIR
INTERRELATIONSHIPS, I.E., THE FUNCTIONAL RELATIONSHIPS OF THE PARTS. (DAN
LD-7)

FUNCTIONAL TESTING
THE EXECUTION OF INDEPENDENT TESTS DESIGNED TO DEMONSTRATE A SPECIFIC
FUNCTIONAL CAPABILITY OF A PROGRAM OR A SOFTWARE SYSTEM. (DAN 154) (2)
VALIDATION OF PROGRAM "FUNCTIONAL CORRECTNESS" EY EXECUTION UNDER CONTROLLED
INPUT STIMULI. THIS TESTING ALSO GAUGES THE SENSITIVITY OF THE PROGRAM TO
VARIATIONS OF THE INPUT PARAMETERS. (DAN 1153)

FUNCTIONALLY READY
THE CONDITION WHEREIN A SYSTEM, SUBSYSTEM, OR COMPONENT EXHIBITS NO FAULTS
WHICH WOULD PRECLUDE THE INITIATION OR CONTINUANCE OF AN INTENDED OPERATION.
(NASA)

GENERALITY
GENERALITY IS THE DEGREE TO WHICH A SYSTEM IS APPLICABLE IN DIFFERENT
ENVIRONMENTS. (DAN 781) (2) COMPARE WITH PORTABILITY AND ADAPTABILITY.

GENERATOR
A GENERATOR PRODUCES TEST DATA OR TEST CASES TO EXERCISE THE TARGET SYSTEM.
A GENERATOR IN THIS CASE IS DIFFERENTIATED FROM A SIMULATOR BECAUSE IT
ACTUALLY CREATES TEST DATA USING NUMERICAL INTEGRATORS, RANDOM NUMBER
GENERATORS, ETC. ONCE THE DATA ARE PRODUCED BY THE GENERATOR, A SIMULATOR
MIGHT BE REQUIRED TO ROUTE THE DATA TO THE SYSTEM. GENERATORS ARE USEFUL IN
A SYSTEM TEST ENVIRONMENT WHERE "LIVE" DATA IS NOT AVAILABLE. USEFUL OUTPUT
OF A DATA GENERATOR ARE TAPES OF LOGGED DATA THAT CAN BE USED WITH A DATA
REPLAY FACILITY FOR ESTABLISHING STANDARD TEST CASES. (DAN 134)

GOTO
IN A HIGH-LEVEL PROGRAMMING LANGUAGE (FORTRAN, COBOL, PL/1,ETC.) GOTO IS A
STATEMENT WHICH TELLS THE COMPUTER WHERE THE SEQUENCE OF EXECUTION SHOULD
CONTINUE...A GOTO STATEMENT NORMALLY TRANSFERS CONTROL OF THE SEQUENCE OF
INSTRUCTIONS TO SOME OTHER POINT IN THE PROGRAM. THE GOTO STATEMENT BECAME A
DEBATING POINT WHEN DIJKSTRA SAID IN 1965 THAT THE QUALITY OF A PROGRAMMER
WAS INVERSELY PROPORTIONAL TO THE NUMBER OF GOTO STATEMENTS IN HIS PROGRAMS.
OTHERS ARGUED FOR THE RETENTION OF THE GOTO STATEMENT BECAUSE OF ITS
USEFULNESS IN A LIMITED NUMBER OF SITUATIONS...ALSO SEE - FLOW (

49

I '

CONTROL.(SET)

GYPSY
GYPSY IS BOTH A GENERAL PROGRAMMING LANGUAGE AND A SPECIFICATION LANGUAGE
WHICH CAN BE USED FOR SYSTEMS PROGRAMMING WHICH REQUIRE CONCURRENT
PROCESSING AND PROCESS SYNCHRONIZATION FACILITIES. BASED ON PASCAL. (DAN389)

HAL/S
A REAL-TIME HIGHER ORDER PROGRAMMING LANGUAGE ESPECIALLY SUITED FOR SPACE
AND AIRCRAFT APPLICATIONS. HAL/S WAS DEVELOPED FOR NASA BY INTERMETRICS.
INC. WITH THE OBJECTIVE OF IMPROVING THE RELIABILITY AND REDUCING THE COST
OF PRODUCING AVIONICS SOFTWARE. (DAN 388)

HALSTEAD'S LAW
PARTIAL DEFINITION: A FORMULA FOR PROGRAM LENGTH BASED ON THE NUMBER OF
DISTINCT OPERATOR TYPES AND THE NUMBER OF DISTINCT OPERAND TYPES. (DAN 299)

HARDEST FIRST
THE DESIGN (OR IMPLEMENTATION) GF THE MOST DIFFICULT ASPECTS OF THlE SYSTEM
FIRST. (SEL)

HARDEST-OUT PRINCIPLE
THE BUILDING OF A SYSTEM BEGINNING WITH THAT PART WHICH. IN THE FINAL
ANALYSIS. WOULD HAVE PROVED TO POSSESS THE HIGHEST RISK TO PROGRAMMING IF
NOT PERFORMED FIRST. AT EACH SUBSEQUENT STEP. THE NEXT A POSTERIORI MOST
CRITICAL PART IS ADDED. UNTIL THE ThTIRE SOFTWARE PACKAGE IS COMPLETED. (DAN
1153)

HARDWARE
PHYSICAL AND ELECTRICAL COMPONENTS OF A COMPUTER SYSTEM THAT PERFORMS THE
INTENT OF INSTRUCTIONS FETCHED FROM MEMORY.

HARDWARE MONITORS
A UNIT THAT OBTAINS SIGNALS FROM A HOST COMPUTER SYSTEM THROUGH PROBES
ATTACHED DIRECTLY TO THE COMPUTER'S CIRCUITRY. TKE SIGNALS OBTAINED ARE FED
TO COUNTERS AND TIMERS AND ARE RECORDED. THESE DATA ARE REDUCED TO OBTAIN
INFORMATION ABOUT CPU UTILIZATION. CHANNEL ACTIVITY. ETC. THESE DATA CAN BE
USED TO IMPROVE BOTH SYSTEM AND PROGRAM PERFORMANCE. (DAN 134)

HARDWARE RELIABILITY
A MEASURE OF THE SUCCESS WITH WHICH THE HARDWARE IN A SYSTEM CONFORMS TO
SOME AUTHORITATIVE SPECIFICATION OF ITS BEHAVIOR, A QUANTATIVE ASSESSMENT.
(DAN 236)

HAZARD FUNCTION
THE PROBABILITY OF AN ERROR OCCURRING IN A GIVEN INFINITESIMAL TIME INTERVAL
GIVEN THAT NO ERROR HAS OCCURRED PREVIOUSLY TO THAT INTERVAL. (OAN 235) (2)
INSTANTANEOUS FAILURE RATE OF A SYSTEM.(MUSA'S MODEL) (DAN 238) (3) THE
ERROR-RATE RELATIONSHIP (DAN 238)

HEURISTIC
AN EXPLORATORY METHOD OF PROBLEM SOLVING IN WHICH SOLUTIONS ARE DISCOVERED
BY EVALUATION OF THE PROGRESS MADE TOWARD THE FINAL RESULT. CONTRAST WITH
ALGORITHM. (DAN 1153)

50

HEURISTIC SEARCH
A TESTING METHOD WHICH ESTABLISHES A SET CF HEURISTICS OF THE FGRM:
(S)-->(A)-->(R). THE LEFT PART REPRESENTS A SET OF STRESS STATES (S) kfHICH
MUST BE TRUE FOR THE RULE TO BE USED. THE SET (S) REPRESENTS THE RELEVANCE
OR JUSTIFICATION OF THE HEURISTIC AND CAN HAVE ANY NUMBER OF MEMBERS. THE
MIDDLE PART (A) REPRESENTS A SET OF ACTIONS WHICH SHOULD BE EXECUTED TO
DISTURB THE THREAT SCENARIO. THESE ACTIONS (A) ARE LIMITED BY CONSTRAINT
CONDITIONS (C) DEFINED BY THE TEST ENGINEER.. (A NOT EQUAL TO 0). THE RIGHT
PART REPRESENTS A SET OF RESULTS (R) WHICH SHOULD BE TRUE AFTER APPLICATION
OF THE RULE AND EXECUTION OF THE SYSTEM. THE SET (R) IS USED TO EVALUATE THE
HEURISTIC. (DAN 428)

HIERARCHIAL STRUCTURE
A HIERARCHICAL STRUCTURE IS AN ORGANIZATION OF SOFTWARE MODULES THAT
CONSISTS OF A ROOT NODE.. .THIS TERM CAN BE APPLIED TO DATA AS WELL AS
PROGRAM. THIS STRUCTURE IS ALSO KNOWN AS TREE STRUCTURE WITHOUT CYCLES.
(SET)

HIERARCHY
A SERIES OF SUCCESSIVE TASKS OR ROUTINES IN A GRADED ORDER. (2) A STRUCTURE
BY WHICH OBJECTS OR CLASSES OF OBJECTS ARE RANKED ACCORDING TO SOME
SUBORDINATING PRINCIPLE OR SET OF PRINCIPLES. ONE COMMON REPRESENTATION OF A
HIERARCHY IS THE DIRECTED TREE-GRAPH, IN WHICH THE ROOT NODE HEADS THE
HIERARCHY, AND ALL OTHER OBJECTS ARE RANKED BY ORDER INTO LEVELS OF
SUBORDINATION. IF A SINGLE SUBORDINATING RELATIONSHIP GOVERNS THE HIERARCHY.
IS SAID TO BE UNORDERED; OTHERWISE IT IS ORDERED. (DAN 1153)

HIGHER-ORDER LANGUAGE
A FULL REPERTOIRE OF INSTRUCTIONS AND STATEMENTS. HAVING FORMAL SYNTAX AND
LEXICAL RULES, USABLE IN COMPOSING MACHINE-INDEPENDENT SOURCE PROGRAMS.
(NASA) (2) SEE ALSO: HIGH LEVEL LANGUAGE (NOTE: SYNONOYMS?)

HIGH-LEVEL LANGUAGE
ISO A PROGRAMMING LANGUAGE THAT DOES NOT REFLECT THE STRUCTURE OF ANY ONE
GIVEN COMPUTER OR THAT OF ANY GIVEN CLASS OF COMPUTERS.

HIPO (HIERARCHY PLUS INPUT-PROCESS-OUTPUT)
A GRAPHICAL TECHNIQUE THAT DEFINES EACH COMPONENT BY ITS TRANSFORNATION ON
ITS INPUT DATA SETS TO ITS OUTPUT DATASETS.(SEL) (2) THIS PART
DOCUMENTATION, PART ANALYTICAL TECHNIOUE CONSISTS OF HIERARCHY CHARTS AND
THE CORRESPONDING INPUT-PROCESS CHARTS. THE HIERARCHY CHART IS A SET OF
BLOCKS, SIMILAR TO AN ORGANIZATION CHART, SHOWING EACH FUNCTION AND ITS
DIVISION INTO SUBFUNCTIONS. FOR EACH FUNCTION OR SUBFUNCTION. AN
INPUT-PROCESS-OUTPUT CHART , ROUGHLY SIMILAR TO THE BLOCK DIAGRAM IN LOGIC
DESIGN. SHOWS THE INPUTS AND OUTPUTS AND THE PROCESSES JOINING THEM. IF THE
HIPO CHARTS THEMSELVES ARE ARRANGED IN A HIERARCHY. THE TECHNIQUES CAN BE
USED TO GRAPHICALLY DOCUMENT TOP-DOWN DESIGN OR STRUCTURED DESIGN. (DAN 227)
(3) HIERARCHY PLUS INPUT/PROCESS/OUTPUT IS A GRAPHIC DESIGN TECHNIQUE USED
TO SHOW FUNCTION. HIPO DIAGRAMS DESCRIBE FUNCTIONS IN TERMS OF THE INPUT TO
A PROCESS. THEY SHOW A SYSTEM. SUBSYSTEM. OR PROGRAM FUNCTIONALLY. I.E. THE
FUNCTIONS THAT IT PERFORMS. ANSWERING THE QUESTION "WHAT DOES IT DO". SINCE
THESE DIAGRAMS ARE VISUAL, THEY ARE EASIER TO UNDERSTAND THAN MOST
DOCUMENTATION WHICH IS NARRATIVE. ALTHOUGH FLOWCHARTS ARE ANOTHER GRAPHIC
DESIGN TECHNIQUE. THEY SHOW ORGANIZATION AND LOGIC IN CONTRAST TO FUNCTION.

51
ia

(DAN 813)

HOL
ACRONYM FOR HIGH(ER) ORDER (OR LEVEL) LANGUAGE.

HOLDET
A LANGUAGE EVALUATION TOOL DEVELOPED BY MCDONNELL DOUGLAS ASTRONAUTICS CO.
FOR THE U.S. ARMY FRANKFORT ARSENAL. IT IS ESSENTIALLY COMPRISED OF TWO
PROCESSORS. HOLDEF PROCESSOR (HOLDEF IS THE DEFINITION LANGUAGL) AND A
GENERALIZED TRANSLATOR (OPTRAN) (DAN 390)

HOST MACHINE
A GENERALLY MORE POWERFUL COMPUTER WHICH HELPS GENERATE OR WHICH EXECUTES
THE SOFTWARE FOR ANOTHER COMPUTER, VIZ., THE TARGET COMPUTER. (NASA) (2) IN
ARPANET TERMINOLOGY, THE "HOST MACHINE" IS THE COMPUTER THE USER IS
CONNECTED TO THROUGH A TIP OR IMP FROM A DISTANT TERMINAL.

HUMAN ENGINEERING
CODE POSSESSES THE CHARACTERISTIC HUMAN ENGINEERING TO THE EXTENT THAT IT
FULFILLS ITS PURPOSE WITHOUT WASTING THE USERS' TIME AND ENERGY. OR
DEGRADING THEIR MORALE. THIS CHARACTERISTIC IMPLIES ACCESSIBILITY,
ROBUSTNESS. AND COMMUNICATIVENESS. (DAN 239)

HYPERGEOMETRIC DISTRIBUTION
RELIABILITY MODEL THAT CAN BE USED TO ESTIMATE THE NUMBER OF REMAINING
ERRORS IN A PROGRAM BY DELIBERATELY SEEDING NEW ERRORS, AND THEN HAVE
SOMEONE ELSE FIND THE SEEDED ERRORS AS WELL AS THE INDIGENOUS OR UNDETECTED
ERRORS STILL IN THE PROGRAM. (DAN 238) SEE ALSO: BUG SEEDING/TAGGING

IDENTIFIER
A SYMBOL WHOSE PURPOSE IS TO IDENTIFY. INDICATE, NAME. OR LOCATE A DATA
STRUCTURE OR PROCEDURE ENTRY POINT. (DAN 1153)

IMP
SEE: INTERFACE MESSAGE PROCESSOR

IMPERFECT DEBUGGING
AN ASSUMPTION THAT ERRORS ARE NOT ALWAYS REMOVED OR CORRECTED WHEN DETECTED.
(DAN 296)

IMPLEMENTATION
THE IMPLEMENTATION OF A PROGRAM IS EITHER A MACHINE EXECUTABLE FORM OF THE
PROGRAM, OR A FORM OF THE PROGRAM THAT CAN BE AUTOMATICALLY TRANSLATLD
(E.G., BY COMPILER OR ASSEMBLER) (SEL) (2) THAT PROCESS BY WHICH AN
ARCHITECTURAL DESIGN IS TURNED INTO A DELIVERED PROGRAM. IT INCLUDES THE
DETAILED FUNCTIONAL AND PROCEDURAL DESIGN, CODING, TESTING, AND
DOCUMENTATION NECESSARY TO MEET PROGRAM REQUIREMENTS, EITHER FOR NEW OR
MODIFIED SOFTWARE. (DAN 1153)

IMPLEMENTATION CORRECTNESS
CORRECTNESS BETWEEN DESIGN AND PROGRAMMED HARDWARE (DAN 322)

IMPLEMENTATION MISINTERPRETATION ERROR
AN ERROR FOR A UNIT OF SOURCE CODE ASSOCIATED WITH A PROGRAM DUE TO THE

52

MISINTERPRETATION OF THE PROGRAM SPECIFICATIONS. (DAN 137)

IMPLEMENTATION PHASE
THE IMPLEMENTATION PHASE CONSISTS OF THE ACTUAL PROGRAM CODE GENERATION.
UNIT TESTING OF THE PROGRAMS AND DOCUMENTING OF THE SYSTEM. (SET)

IMPLEMENTATION TECHNOLOGY
THE BODY OF TECHNOLOGY USEFUL IN THE DEFINITION, DESIGN, PROGRAMMING, AND
PRODUCTION OF SOFTWARE. (NASA)

IMPLIED SYSTEM PERFORMANCE
AN UNWRITTEN REQUIREMENT WHICH IS UNDERSTOOD BY THE MAJORITY OF THE PROJECT
TEAM TO BE ESSENTIALLY EQUIVALENT TO A WRITTEN REQUIREMENT. (DAN 31)

INDEPENDENT TEST TEAM
A PROJECT GROUP NOT ASSOCIATED WITH THE SOFTWARE DESIGN/DEVELOPMENT SECTION
WHICH IS RESPONSIBLE FOR TESTING SOFTWARE TO CHECK ITS COMPLIANCE TO
SPECIFICATIONS.

INDIGENOUS ERROR
AN ERROR EXISTING IN A PROGRAM THAT HAS NOT BEEN INSERTED FOR CALIBRATION
PURPOSES. (DAN 1153)

INDUCTIVE ASSERTION
AN INVARIANT PREDICATE APPEARING WITHIN A PROCEDURE ITERATION. USUALLY
PLACED JUST FOLLOWING THE LOOP-COLLECTING NODE, THESE PREDICATES ARE USED AS
AN AID TOWARD PROVING CORRECTNESS. (DAN 1153) (2) A MATHEMATICAL OR LOGICAL
DESCRIPTION OF THE STATE OF A COMPUTATION AT EACH INSTANCE OF AN EXECUTION
THROUGH IT. IT TAKES THE FORM P <ASSERTION> 0 WHERE P AND 0 ARE PROGRAM
SEGMENTS. FOR Q TO BE TRUE, P ACTING ON THE ASSERTIONS (WHICH ARE ALWAYS
ASSUMED TRUE) MUST RESULT IN Q FOR THE ENTIRE DOMAIN SPECIFIED FY THU
ASSERTIONS.

INFERENCE RULES
ANNOTATION TECHNIQUES/RULES USED IN PROVING PROGRAM CORRECTNESS. THE
ANTECEDENTS OF EACH RULE ARE USUALLY ANNOTATED PROGRAM SEGMENTS CONTAINING
INVARIANTS OR CANDIDATE INVARIANTS AND THE CONSEQUENT IS EITHER AN INVARIANT
OR A CANDIDATE. DERSHOWITZ AND MANNA (REF 263) DIFFERENTIATE 3 TYPES OF
RULES; ASSIGNMENT RULES, CONTROL RULES, AND HEURISTIC RULES. ASSIGNMENT
RULES YIELD GLOBAL INVARIANTS BASED ONLY UPON THE ASSIGNMENT STATEMENTS OF
THE PROGRAM. CONTROL RULES YIELD LOCAL INVARIANTS BASED UPON THE CONTROL
STRUCTURES OF THE PROGRAM. HEURISTIC RULES HAVE CANDIDATES AS THEIR
CONSEQUENTS. THESE CANDIDATES ARE NOT GUARANTEED TO BE INVARIANTS. (DAN 263)

INFORMAL PROOF OF CORRECTNESS
THE VISUAL INSPECTION OF A SMALL, COMPREHENSIVE SET OF TEST CASES
INDICATING THAT THE CODE OF A PROGRAM SEGMENT MATCHES ITS SPECIFICATION.
VALIDATION OF THE PROGRAM SEGMENT IS BASED ON AXIOMS STATING THAT
LOWER-LEVEL SEGMENTS MATCH THEIR SPECIFICATIONS. (DAN LD7)

INFORMAL TESTING
TESTING THAT UTILIZES INTERNAL TEST DOCUMENTATION CONTROL AND PROCEDURES.
INFORMAL TESTING USUALLY IS DESIGNED TO BE DEVELOPMENT GROUP TESTING AND
REQUIRES NO FORMAL CUSTOMER APPROVAL. INFORMAL TESTING USUALLY BEGINS WHEN

53

LI

I
THE FIRST PROGRAM UNIT IS CODED AND CONTINUES THROUGHOUT THE SYSTLN
IMPLEMENTATION nHASE OF SOFTWARE DEVELOPMENT. TERMS USED IN THE LITERATURE
TO DESCRIBE THIS TESTING INCLUDE: 1. UNIT TESTING. 2. SUBSYSTEM TESTING, 3.
INTEGRATION TESTING, 4. COMPONENT TESTING, 5. DEVELOPMENT TESTING. (DAN 154)
(2) TO TEST USING INFORMAL DOCUMENTATION. USUALLY A PRELIMINARY FORM OF
TESTING PERFORMED BEFORE A FORMAL CERTIFICATION TEST. (DAN 1201)

INFORMATION
CORRELATION OF DATA FOR THE PROCESS OF INFORMING. (DAN 137) (2) A
REPRESENTATION OF KNOWLEDGE, INTELLIGENCE, CR OTHER MEANINGFUL DATA IN A
FORM THAT CAN BE USED TO CAUSE OR MODIFY THE PURPOSEFUL ACTIONS OF HUMANS OR

MACHINES, PERHAPS AS THE RESULT OF PROPER ORGANIZATION, ANALYSIS, AND
PRESENTATION. (DAN 1153) CONTRAST WITH DATA

INFORMATION HIDING
THE PROCESS OF ISOLATING CHANGEABLE PARTS OF A PROGRAM IN MODULES AND
DEVELOPING AN INTERFACE EETWEEN THE MODULE AND THE REST OF THE PROGRAM THAT
REMAINS VALID FOR ALL VERSIONS. (DAN 275) (2) A SOFTWARE DESIGN AND CODING
CRITERION. A SYSTEM CONFORMS TO THE CRITERION OF INFORMATION HIDING TO THE
EXTENT THAI ATTRIBUTES OF DATA OBJECTS ARE MANIPULATED INDIRECTLY VIA
FUNCTIONS NAMED FOR THOSE ATTRIBUTES. A SYSTEM FAILS TO CONFORM TO THE
CRITERION OF INFORMATION HIDING TO THE EXTENT THAT ATTRIBUTES OF DATA
OBJECTS ARE MANIPULATED DIRECTLY IN TERMS OF IMPLICIT KNOWLEDGE OF THE
REPRESENTATION OF THOSE ATTRIBUTES. (SEE REPRESENTATION). EXAMPLE. A THREE
ELEMENT, ONE DIMENSIONAL, REAL ARRAY MAY BE USED TO REPRESENT THE (X,Y,Z)
COORDINATE POSITION OF AN OBJECT IN SPACE. TO THE EXTENT THAT SUCH AN ARRAY
IS OPERATED ON THROUGH THE USE OF ARRAY INDICES, (P(1). P(2). P(3)). THE
SYSTEM IS NOT IN CONFORMANCE TO THE CRITERION OF INFORMATION HIDING. TO THE
EXTENT THAT SUCH AN ARRAY IS OPERATED ON IN TERMS OF SYMBOLIC FUNCTIONS
NAMED AFTER THE ATTRIBUTES, (X(P), Y(P), Z(P) OR P.X, P.Y, P.Z) THE SYSTEM
IS IN CONFORMANCE TO THE CRITERION OF INFORMATION HIDING. (ABBOTT)

INFORMATION SYSTEMS
A SYSTEM WHICH PROVIDES PROCESSING CAPABILITIES FOR INFORMATION AND/OR DATA
AND ALSO FOR MANAGING THE INFORMATION AND/OR DATA. (DAN 503) (2) AN
ASSEMBLAGE OF METHODS, TECHNIQUES. PROCEDURES. PROGRAMS, OR DEVICES THAT
SENSE, CONVEY, STORE, PROCESS, RETRIEVE, OR DISSEMINATE INFORMATION. UNITED
BY REGULATED INTERACTION. TO ACCOMPLISH AN ORGANIZED, PURPOSEFUL TASK. (DAN
1153)

INFORMATION SYSTEMS TECHNOLOGY
THE BODY OF KNOWLEDGE AND PHYSICAL PHENOMENA THAT CONSTITUTE AN APPLIED
SCIENCE ORIENTED TOWARD THE INDUSTRIAL USAGE OF INFORMATION SYSTEMS. (CAN
1153)

INITIATION
THE ACT OF CREATING AN ENVIRONMENT FOR THE INVOCATION OF AN ENTITY.
(ANSI-X3H1)

INPUT ASSERTION
AN INPUT ASSERTION IS AN ASSERTION (USUALLY DENOTED 6Y THE GREEK LETTER PHI)
THAT IMPOSES CONDITIONS ON THE INPUT TO A PROGRAM. IT IS USED TO SPECIFY THE
DOMAIN OF INPUT VALUES OVER WHICH A PROGRAM IS INTENDED TO OPERATE. A
PROGRAM IS SAID TO BE TOTALLY CORRECT WITH RESPECT TO AN INPUT ASSERTION

54

I' I

PHI, IF IT YIELDS THE DESIRED OUTPUT FOR ALL SETS OF INPUT VALUES SATISFYING
PHI. ALSO SEE - ASSERTION, OUTPUT ASSERTION, PARTIAL CORRECTNESS, TOTAL
CORRECTNESS. (SET)

INPUT - DATA SENSITIVITY
DEGREE TO WHICH PERFORMANCE IMPROVEMENTS DICTATED BY A PROGRAM MODIFICATION
UNDER A CERTAIN SET OF INPUT DATA ARE PRESERVED UNDER DIFFERENT SETS OF
INPUT DATA. (DAN 435)

INPUT/OUTPUT
(1) (ISO) PERTAINING TO A DEVICE OR TO A CHANNEL THAT MAY BE INVULVED IN AN
INPUT PROCESS AND, AT A DIFFERENT TIME, IN AN OUTPUT PROCESS. IN THE ENGLISH
LANGUAGE, INPUT-OUTPUT MAY BE USED IN PLACE OF INPUT-OUTPUT DATA,
INPUT-OUTPUT SIGNAL, INPUT-OUTPUT TERMINALS. ETC., WHEN SUCH USAGE IS CLEAR
IN A GIVEN CONTEXT. (2) (ISO) PERTAINING TO A DEVICE WHOSE PARTS CAN BE
PERFORMING AN INPUT PROCESS AND AN OUTPUT PROCESS AT THE SAME TIME. (3)
PERTAINING TO EITHER INPUT OR OUTPUT, OR BOTH.

INSTALLATION DEFAULT
A DEFAULTED VALUE SPECIFIC TO A PARTICULAR SET OF HARDWARE, SOFTWARE AND
PEOPLE. (ANSI-X3HI)

INSTRUCTION
AN ABSTRACT OR CONCRETE ENTITY THAT CAUSES A CHANGE IN STATE OR ACTION BY
THE COMPUTER

INSTRUCTION SET
THE REPERTOIRE OF MACHINE LEVEL INSTRUCTIONS AVAILABLE TO A PROGRAMMER FOR A
PARTICULAR COMPUTER. (NASA)

INSTRUCTION SIMULATOR
A COMPUTER PROGRAM USED TO SIMULATE THE EXECUTION CHARACTERISTICS OF A
TARGET COMPUTER USING A SEQUENCE OF INSTRUCTIONS OF A HOST COMPUTER. THE
INSTRUCTION SIMULATOR PROVIDES BIT-FOR-BIT FIDELITY l'ITIH THE RESULTS THAT
WOULD BE PRODUCED BY THE TARGET COMPUTER FOLLOWING THE SAME OPERATIONS AND
INITIAL CONDITIONS. (DAN 134)

INSTRUCTION TRACE
A COMPUTER PROGRAM USED TO RECORD EVERY TIME A CERTAIN CLASS OF OPERATIONS
OCCURS AND TRIGGER EVENT-DRIVEN DATA COLLECTION. IN SOME CASES, THIS CREATES
A COMPLETE TIMED RECORD OF LITERALLY EVERYTHING SIGNIFICANT THAT OCCURRED
DURING PROGRAM EXECUTION. THESE TRACES CONTAIN DATA ON INSTRUCTION AND
BECOME A PERMANENT RECORD OF A PROGRAM'S EXECUTION. (DAN 134)

INSTRUMENTATION TOOLS
THOSE PROGRAMS THAT MONITOR AND RECORD INFORMATION ABOUT AN OBJECT SYSTEM OR
PORTIONS THEREOF, AS IT OPERATES DATA REDUCTION AND ANALYSIS. (DAN LD7)

INTEGRATION
THE COMBINATION OF SUBUNITS INTO AN OVERALL UNIT OR SYSTEf BY MEANS OF
INTERFACING IN ORDER TO PROVIDE AN ENVISIONED DATA PROCESSING CAPABILITY.
(DAN 1153)

INTEGRATION TEST

INTEGRATION TEST - TEST OF SEVERAL MODULES IN ORDER TO CHECK THAT THE
INTERFACES ARE DEFINED CORRECTLY. FULL INTEGRATION TEST - TESTING OF THE
ENTIRE SYSTEM: (I.E. TOP LEVEL COMPONENT). PARTIAL INTEGRATION TEST - TEST OF
ANY SET OF NODULES PUT NOT THE ENTIRE SYSTEM. (SEL)

INTEGRITY PROBABILITY
A MEASURE OF SYSTEM SURVIVAL PROBABILITY. INTEGRITY PROBABILITY IS A
FUNCTION OF SECURITY PROBABILITY, AND ATTACK PROBABILITY. SYSTEM SURVIVAL IS
DEPENDENT ON THE FREQUENCY OF SYSTEM ATTACK COUPLED WITH THE ABILITY OF THE
SYSTEM TO MAKE ITSELF SECURE FROM A PARTICULAR TYPE OF ATTACK. (DAN 781)

INTENDED USE OF
THE RESULT OF INVOKING A PROGRAM OR SEGMENT OF A PROGRAM, INCLUDING THE
ACTIONS PERFORMED BY THAT PROGRAM WHEN INVOKED. INVOCATION MAY BE BY
SUBROUTINE OR FUNCTION CALL, OR BY A BRANCH TO A SEGMENT OF CODE. (SEL)

INTERACTION
MUTUAL OR RECIPROCAL ACTION OR INFLUENCE BETWEEN TWO OR MORE ENTITIES.
(ANSI-X3HI) (2) THE RECIPROCAL EFFECTS OF ONE SOFTWARE MODULE OR HARDWARE
DEVICE ON ANOTHER. (DAN 1201)

INTERACTIVE
USAGE OF A COMPUTER VIA A TERMINAL WHERE EACH LINE OF INPUT IS IMMEDIATELY
PROCESSED BY THE COMPUTER. (SEL)

INTERACTIVE DEBUG
INTERACTIVE DEBUGGING (ID) IS THE PROCESS OF SEEKING AND CORRECTING ERRORS
IN A COMPUTER PROGRAM WHILE COMMUNICATING WITH THE COMPUTER EXECUTING THE
PROGRAM...TYPICALLY, THE COMMUNICATION TAKES THE FORM OF MONITORING PROGRAM,
PROGRESS, INSPECTING INTERMEDIATE VALUES, INSERTING DATA CORRECTIONS AS
NEEDED. AND, IN GENERAL, CONTROLLING PROGRAM EXECUTION. ID CAN DRAMATICALLY
REDUCE THE TIME NEEDED TO DEBUG A PROGRAM SINCE THE PROGRAMMER CAN
ACCOMPLISH IN A SHORT SESSION WITH THE "COMPUTER" (OFTEN. A REMOTE TERMINAL
ATTACHED TO THE COMPUTER) WHAT WOULD NORMALLY TAKE SEVERAL BATCH TURNAROUNDS
(E.G., IN MANY INSTALLATIONS, SEVERAL DAYS.) (SET)

INTERFACE
A SHARED BOUNDARY. AN INTERFACE MIGHT BE A HARDWARE COMPONENT TO LINK TWO
DEVICES OR IT MIGHT BE A PORTION OF STORAGE OR REGISTERS ACCESSED BY TWO OR
MORE COMPUTER PROGRAMS. (ANSI-X3) (2) INTERFACE - THE SET OF DATA PASSED
BETWEEN TWO OR MORE PROGRAMS OR SEGMENTS OF PROGRAMS, AND THE ASSUMPTIONS
MADE BY EACH PROGRAM ABOUT HOW THE OTHER(S) OPERATE. (SEL) (3) THE COMMON
BOUNDARY BETWEEN SOFTWARE MODULES, BETWEEN HARDWARE DEVICES, OR BETWEEN
HARDWARE AND SOFTWARE. (DAN 1201) (4) WHEN APPLIED TO A MODULE, THAT SET OF
ASSUMPTIONS MADE CONCERNING THE MODULE BY THE REMAINING PROGRAM OR SYSTEM IN
WHICH IT APPEARS. MODULES HAVE CONTROL. DATA, AND SERVICES INTERFACES. (DAN
1153)

INTERFACE CHECKER
A COMPUTER PROGRAM USED TO AUTOMATICALLY CHECK THE RANGE AND LIMITS OF
VARIABLES AS WELL AS THE SCALING OF SOURCE PROGRAMS TO ASSURE FORMAT
COMPLIANCE WITH INTERFACE AND CONTROL DOCUMENTS. (DAN 134)

INTERFACE CONTROL

56

INTERFACE CUNTROL REQUIRES THAT INPUT/OUTPUT SPECIFICATIONS MUST bL
CONTROLLED AS ENGINEERING CONFIGURATION ITEMS AT SYSTEM DESIGN,
IMPLEMENTATION, INTEGRATION AND OPERATION TIMES. (DAN 346)

INTERFACE MESSAGE PROCESSOR (IMP)
A PIECE OF PACKET-SWITCHING HARDWARE USED FOR STORAGE OF M ESSAGES, ROUTING
OF SIGNALS AND PASSAGE OF CUMMUNICATIUNS IN THE ARPANET. IT IS SMALLER IN
SCOPE IN ITS CAPABILITIES THAN THE TIP WHICH IT RESEMBLES FUNCTIONALLY.

INTERFACE SPECIFICATION DOCUMENT
A DOCUMENT THAT SERVES AS A COMMUNICATIONS VEHICLE BETWEEN THE CONFIGURATION
CONTROL AND TECHNICAL IMPLEMENTATION PROCESSES, AND SUPPORTS THE
COORDINATION OF EFFICIENT, CONTROLLABLE INiTERFACES. (CAN LD7)

INTERFACE TESTING
VALIDATION THAT A MODULE OR SET OF MODULES OPERATE WITHIN AGREED INTERFACE
SPECIFICATIONS TO ASSURE PROPER DATA AND LOGICAL COMMUNICATIONS. (DAN 1153)

INTERMITTENT ASSERTIONS METHOD
A TECHNIQUE OF PROVING TOTAL CORRECTNESS WHICH INVOLVES AFFIXING CONMENTS TO
POINTS IN THE PROGRAM BUT WITH THE INTENTION THAT SOMETIME CONTROL WILL PASS
THROUGH THE POINT AND SATISFY THE ATTACHED ASSERTION. CONSECUENTLY. CONIROL
MAY PASS THROUGH A POINT MANY TIMES WITHOUT SATISFYING THE ASSERTION, BUT
CONTROL MUST PASS THROUGH THE POINT AT LEAST ONCE WITH THE ASSERTION
SATISFIED; THEREFORE, WE CALL THESE COMMENTS INTERMITTENT ASSERTIONS. (DAN
419)

INTERNAL DELIVERY
THE POINT AT WHICH THE SOFTWARE AS AN ENTIRE PACKAGE IS GIVEN TO THE
INDEPENDENT TEST GRCUP. (DAN 21)

INTEROPERABILITY
THE TERM INTEROPERABILITY MEANS THAT ANY USER OF A LOCAL SYSTEM CAN
POTENTIALLY ALSO OPERATE ANY INTERCONNECTED REMOTE SYSTEM. (DAN 346)

INTERPRET
EXECUTE MACHINE LANGUAGE PROGRAMS BY TRANSLATING EACH STATEMENT TO A
CORRESPONDING SEQUENCE OF ELEMENTAL MACHINE OPERATIONS PRIOR TO PROCEEDING
TO THE NEXT STATEMENT. (NASA)

INTERPRETATION CORRECTNESS
CORRECTNESS BETWEEN REQUIREMENTS AND SPECIFICATION (DAN 322)

INTERPRETIVE SIMULATOR
A HOST MACHINE PROGRAM WHICH INTERPRETIVELY EXECUTES A TARGET MACHINE
PROGRAM IN A DYNAMICALLY REPRESENTATIVE MANNER, BUT WITHOUT ACKNOWLEDGING
NUMERICAL OR ARITHMETIC EFFECTS. (NASA)

INTERPROCESS COMMUNICATION
THE SENDING AND RECEIVING OF MESSAGES BY THE PROCESSES/ENTITIES WITHIN AN
OPERATING SYSTEM.

INTERRUPT
ANY STOPPING OF A PROCESS IN SUCH A WAY THAT IT CAN BE RESUMED. A PARTICULAR

57

TYPE OF INTERRUPT IS THE "TRAP". (LAN 1153)

INTERRUPT ANALYZER
A COMPUTER PROGRAM THAT EXAMINES SOURCE CODE AND DETEkMINES POTENTIAL
CONFLICTS IN THE USE OF DATA AND/OR STORAGE DUE TO INTERPRUPTS. (LAN 134)

INVARIANT
AN INVARIANT IS AN ASSERTION ASSOCIATED WITH A POINT IN A PROGRAM THAT IS
SATISFIED WHENEVER EXECUTION REACHES THAT POINT... AN INVARIANT THAT CUTS A
LOOP IN THE PROGRAM IS SOMETIMES CALLED A "LOOP INVARIANT." SUCH AN
ASSERTION IS SAID TO "CARRY" ITSELF AROUND THE LOOP...ALSO SEE - 4SSERTION,
LOOP ASSERTION. (SET)

INVARIANT ASSERTION
SYNONOMOUS WITH INVARIANT.

INVOCATION
THE TRANSFER OF CONTROL TO AN ENTITY CAUSING IT TO BE ACTIVATED. (ANSI-X3HI)
(2) THE LINKING TO OR INSERTION OF A PROCEDURE BODY BY MEANS OF A NAMED
REFERENCE WITHIN A PROCEDURE. SUBROUTINE LINKING IS SOMETIMES REFERRED TO AS
A "CALL". CODE INSERTION IS REFERRED TO AS A "NACRO CALL". (DAN 1153)

INVOKE
THE ACT OF CAUSING INVOCATION.

I/0 PROCESSOR
INPUT-OUTPUT PROCESSOR: A FRONT-END PIECE OF HARDWARE THAT INTERFACES
BETWEEN THE INPUT-OUTPUT EQUIPMENT AND THE COMPUTER.

ISRAD
(INTEGRATED SOFTWARE RESEARCH AND DEVELOPNENT PROGRAM) A U.S. ARMY PROGRAM;
FOR RESEARCH AND DEVELOPMENT IN COMPUTER SCIENCE. (DAN 290)

ITERATION
AN ITERATION IS AN EXPRESSION IN A PROGRAMMING LANGUAGE THAT CAUSES A
SEOUENCE OF INSTRUCTIONS TO BE REPEATED, UNTIL A SPECIFIED SET OF CONDITIONS
IS EITHER MET OR NOT REACHED.. .AN ITERATION IS ONE OF THE FUNDAMENTAL
CONTROL STRUCTURES IN PROGRAMMING . IT IS AN ALLOWED CONSTRUCT IN STRUCTURED
PROGRAMMING... ALSO SEE - STRUCTURED PROGRAMMING (SET)

ITERATIVE ENHANCEMENT
THE DESIGN (OR IMPLEMENTATION) OF SUCCESSIVE VERSIONS, EACH PRODUCING A
USABLE SUBSET OF THE FINAL PRODUCT UNTIL THE ENTIRE SYSTEM IS FULLY
DEVELOPED. (SEL)

JAVS (JOVIAL AUTOMATED VERIFICATION SYSTEM)
AN AUTOMATED TOOL FOR TESTING JOVIAL PROGRAMS. THE SYSTEM WAS DEVELOPED
UNDER CONTRACTS FROM ROME AIR DEVELOPMENT CENTER, GRIFFISS AFB, NY

JELINSKI-MORANDA MODEL
THIS MODEL WAS DEVELOPED BY DR. P. MORANDA AND MR. Z. JELINSKI OF MCDUNNELL
DOUGLAS ASTRONAUTICS CO. THE MODEL ASSUMES AN EXPONENTIAL FORM OF THE
PROBACILITY DENSITY FUNCTION FOR THE DISTRIEUTION OF SOFTWARE ERRORS
DETECTED AS A FUNCTION OF CALENDAR TIME. THE BASIC ASSUMPTIONS OF THIS MODEL

58

* 4

ARE: 1) THE AMOUNT OF DEBUGGING TIM, BETWEEN ERROR OCCURRENCES HAS AN
EXPONENTIAL DISTRIBUTION WITH AN ERROR OCCURRENCE RATE (OR HAZARD FUNCTIGN')
PROPORTIONAL TO THE NUMBER OF REMAINING EPRORS. 2) EACH ERROR DISCOVERED IS
IMM:EDIATELY REMOVED, THUS LECREASING THE TOTAL NUMBER OF ERRORS BY ONE. 3)
THE FAILURE RATE BETWEEN ERRORS IS CONSTANT. (DAN 402)

JOB
COMPUTER JOB CONSISTING OF ONE OR NORE STEPS SUCH AS COMPILATION, ASSEMBLY
OR UTILITY RUNS. (DAN 137)

JOB CONTROL LANGUAGE (JCL)
SEE COMMAND LANGUAGE, OPERATING SYSTEM COMMAND AND RESPONSE LANGUAGE
(OSCRL). (ANSI-X3HI)

JOINT LOGISTICS COMMANDERS
A SUBGROUP COMPOSED OF REPRESENTATIVES FROM THE ARMY MATERIAL COMMAND. THE
NAVY MATERIAL COMMAND, AIR FORCE LOGISTICS COMMAND AND THE AIR SYSTEMS
COMMAND. (DAN 222)

JOVIAL
CLASS NAME FOR A SET OF PROGRAMMING LANGUAGES ORIENTED TOWARD COMMAND AND
CONTROL USAGE THAT ARE HIGHLY DISTINGUISHABLE BETWEEN EACH OTHER IN
COMMANDS, SCOPE, AND FORMAT. THE LANGUAGES ARE MORE SPECIFICALLY TERMED BY
THEIR SUFFIXES: JOVIAL(J3),J3; JOVIAL(J3B),J3B; JOVIAL(J73),J73.

KERNEL
A SMALL SELF-CCNTAINED COLLECTION OF KEY SECURITY-RELATED STATEMENTS THAT
WORKS AS A PRIVILEGED PART OF THE OPERATING SYSTEM AND ARE THEREBY
ACCESSIBLE ONLY AT A HIGHER ASSESSIBILITY LEVEL THAN THE SUPERVISOR STATE.
ALL CRITERIA SPECIFIED BY THE KERNEL MUST BE MET FOR A PROGRAM TO PERFORM'
SATISFACTORILY.

KNOT
A POINT AT WHICH TWO (OR MORE) DIRECTIONAL LINES, EACH INDICATING A FLOW OF
CONTROL WITHIN A PROGRAM, ARE FORCED TO CROSS EACH OTHER. (USED TO DERIVE A
PROGRAM COMPLEXITY MEASURE). (DAN 871)

LANGUAGE DESIGN
INDEXING TERM. REFERS TO THE PROCESS OF DESIGNING AND DEVELOPING A COMPUTER
LANGUAGE OR TO AN ANALYSIS OF THE DESIGN OF A COMPUTER LANGUAGE.

LANGUAGE EVALUATION
INDEXING TERM. REFERS TO DOCUMENTS EVALUATING SPECIFIC FEATURES OF A
COMPUTER LANGUAGE, OR COMPARING TWO OR MORE LANGUAGES IN GENERAL OR WITH
RESPECT TO SPECIFIC FEATURES OR APPLICATIONS.

LANGUAGE PROCESSORS
COMPUTER PROGRAMS USED TO TRANSLATE HIGH-LEVEL OR SYMBOLIC INSTRUCTION
MNEMONICS INTO COMPUTER-ORIENTED CODE CAPABLE OF BEING OBEYED BY A COMPUTER.
THESE PROCESSORS TYPICALLY HAVE CAPABILITIES FOR ERROR DETECTION THROUGH
SYNTAX ANALYSIS AND PROVIDE SYMBOLIC ADDRESSING, EXPRESSION EVALUATION, AND
SYMBOL CROSS-REFERENCE LISTINGS. COMPILERS. ASSEMBLERS AND META-ASSEMBLERS
ARE EXAMPLES OF THIS CATEGORY OF AIDS. (DAN 134)

$9I . D

LANGUAGE STRUCTURE
THE SET CONSISTING OF THOSE LANGUAGE CONSTRUCTS WHICH GOVERN FLOW OF CONTROL
WITHIN A PROGRAM, MANAGEMENT OF MEMORY, CREATION OF DATA STRUCTURES AND
EVALUATION OF EXPRESSIONS.

LEAST COMMON MECHANISM
THE RESULT OF APPLYING OCCAM'S RAZOR TO A SOLUTION. (ANSI-X3HI)

LEGIBILITY
CODE POSSESSES THE CHARACTERISTIC LEGIBILITY TO THE EXTENT THAT ITS FUNCTION
IS EASILY DISCERNED BY READING THE CODE. (EXAMPLE: COMPLEX EXPRESSIONS HAVE
MNEMONIC VARIABLE NAMES AND PARENTHESES EVEN IF UNNECESSARY.) LEGIBILITY IS
NECESSARY FOR UNDERSTANDABILITY. (DAN 239

LEIGHTON DIAGRAM
A TOOL TO DISPLAY IN ONE PLACE THE RELATIONSHIP OF ALL PROCESSING
ACTIVITIES. INPUTS, AND OUTPUTS,RELATING TO A SECTION OF A PROGRAM. (DAN
271)

LEVEL
A UNIT CORRESPONDING TO SOME PARTITIONING OF THE FINAL PRODUCT (E.G., A
SINGLE LINE OF CODE, TEN LINES OF CODE, 25 LINES OF CODE, SUBROUTINE,
MODULE). IF THE SYSTEM IS HIERARCHICALLY STRUCTURED, EACH COMPONENT IS AT A
HIGHER LEVEL THAT ITS SUBCOMPONENTS, AND THE LEVEL MAY BE DESCRIBED AS THE
HIGHEST LEVEL COMPONENT (THE COMPONENT AT LEVEL 1), OR THE COMPONENT AT
LEVEL 2, OR THE LOWEST LEVEL COMPONENT, ETC. (SEL) (2) LOWEST LEVEL -
SMALLEST UNIT IDENTIFIED BY THE ACTIVITY (E.G.. CODE READING TO THE SINGLE
STATEMENT. TOP DOWN DESIGN TO THE MODULE LEVEL. TOP DOWN DESIGN TO LEVEL 3).
(SEL) (3) THE DEGREE OF SUBORDINATION IN A HIERARCHY. (DAN 1153)

LEVEL OF ACCESS
A SET OF FUNCTIONS, MACROS, SUBROUTINES, ETC., THAT ACCESS A PARTICULAR DATA
STRUCTURE OR TYPE OF DATA STRUCTURE, THROUGH WHICH ALL ACCESSES TO THAT
STRUCTURE OR TYPE, EXCEPT THOSE WITHIN THE FUNCTIONS, ETC., MUST PASS. ALSO
CALLED "CLUSTERS" OR "PARNAS MODULES". (DAN 1153)

LEVEL OF NESTING
ONE MEASURE OF THE EXTENT TO WHICH NESTING IS USED IN AN OBJECT. THE LEVEL
OF NESTING OF AN OBJECT IS DEFINED TO BE ONE GREATER THAN THE HIGHEST LEVEL
OF NESTING USED IN ANY OF THAT OBJECT'S COMPONENT OBJECTS. IF AN OBJECT HAS
NO COMPONENT OBJECTS, ITS LEVEL OF NESTING IS DEFINED TO BE ZERO.(ABBOTT)

LEVELS OF ABSTRACTION
A DESIGN AND IMPLEMENTATION METHOD THAT HELPS PRODUCE RELIABLE SOFTWARE THAT
IS MORE EASILY MODIFIED AND MAINTAINED BY IDENTIFYING AND PLACING INTO A
HIERARCHICAL STRUCTURE THE FUNCTIONAL PROCESSES AND DATA RESOURCES THAT
CONSTITUTE THE SYSTEM'S PROGRAM STRUCTURE. IN ADDITION, A DESIGN DISCIPLINE
THAT SUPPORTS THE CREATION OF A WELL BEHAVED, HIERARCHICALLY STRUCTURED,
MODULAR SYSTEM. (DAN LD7) (2) LEVEL OF ABSTRACTIONS REFERS TO THE WAY IN
WHICH A SPECIFIC SINGULAR COMPUTATION CAN BE INTELLECTUALLY GRASPED BY
CONSIDERING IT AS A MEMBER OF LARGER CLASS OF DIFFERENT COMPUTATIONS...THIS
TERM IS USUALLY USED DURING THE DESIGN AND CODING STAGE. THE TECHNIQUE TO
ACHIEVE LEVELS OF ABSTRACTION IS TOP-DOWN DESIGN.. .ALSO SEE - TOP-DOWN,
HIERARCHICAL STRUCTURE (SET) (3) A COLLECTION OF OPERATIONS, DATA OBJECTS

60

l "

AND DATA TYPES USED TO DEFINE AN ABSTRACT MACHINE. (ABBOTT)

LEXICAL BINDING
LOCATION OF COMPONENTS CONSTITUTING A MODULE PHYSICALLY TOGETHER. (DAN 1153)

LIBRARIAN
A CLERK WHOSE RESPONSIBILITIES INCLUDE PROCESSING SOURCE STATEMENTS, BUT NOT
WRITING THEM (E.G., NAINTAINING LIBRARIES, UPDATING CODE, PRODUCING TAPE
BACKUPS, ETC.) (SEL) SEE ALSO DEVELOPMENT SUPPORT LIBRARIAN.

LIEN
A CHARGE UPON SOME DISCREPANT SOFTWARE ITEM IN THE FORM OF A DEBT OR DUTY
LATER TO BE REDEEMED OR OTHERWISE SATISFIED. USUALLY THIS TERM REFERS TO THE
DELIVERY OF SOFTWARE IN SOME USABLE FORM BUT REOUIRING THE REMOVAL OF
DISCREPANCIES (PROGRAM OR DOCUMENTATION) IN ORDER TO BE COMPLETE. (DAN 1153)

LIKELIHOOD FUNCTION
SEE MAXIMUM LIKELIHOOD

LINE OF SOURCE CODE
80 CHARACTER CARD IMAGE OF SOURCE CODE. (DAN 137)

LINE OF SOURCE CODE FROM ANOTHER SOURCE
CODE NOT DEVELOPED BUT EXTRACTED FROM OTHER SOURCES. (DAN 137)

LINK
TO ESTABLISH CORRESPONDENCES WITHIN A SET OF CODE SEGMENTS WHICH SATISFY
REFERENCES BETWEEN SEGMENTS. TO LINK-EDIT IS SYNONONOUS WITH TO LINK. A
LINKER OR LINK-EDITOR IS THE PROGRAM THAT CARRIES OUT THIS ACT. (ANSI-X3HI)

LINK EDITOR
A PROGRAM WHICH INTEGRATES SEPARATE RELOCATABLE CODE ROUTINES INTO A UNIFIED
PROGRAM. (NASA) (2) SYNONYMOUS WITH LINKAGE EDITOR

LINKAGE EDITOR
A UTILITY ROUTINE THAT CREATES A LOADABLE COMPUTER PROGRAM BY COMBINING
INDEPENDENTLY TRANSLATED COMPUTER PROGRAM MODULES AND BY RESOLVING CROSS
REFERENCES AMONG THE MODULES. (ANSI-X3)

LISP LIST STRUCTURE
STRUCTURES FOR LISP LIST PROCESSING MECHANISM ARE COMPOSED OF LIST CELLS
CONSISTING OF TWO POINTERS CALLED CAR AND CDR, WHICH MAY POINT TO OTHER LIST
CELLS OR TO A VARIETY OF NON LIST OBJECTS. (DAN 872)

LIST PROCESSING
(ISO) A METHOD OF PROCESSING DATA IN THE FORM OF LISTS. USUALLY, CHAINED
LISTS ARE USED SO THAT THE LOGICAL ORDER OF ITEMS CAN BE CHANGED WITHOUT
ALTERING THEIR PHYSICAL LOCATIONS. (ANSI-X3)

4

LOADABLE PROGRAM DATA
DATA THAT IS RELOCATABLE OR ABSOLUTE BINARY MODULES PRODUCED BY A LINK
EDITOR. (DAN LD7)

LOADER

61 .

A ROUTINE, COMMONLY A COMPUTER PROGRAM, THAT READS DATA INTO MAIN STORAGE.
(2) A COMPUTER PROGRAM THAT ENABLES EXTERNAL REFERENCES OF SYMBOLS AMONG
DIFFERENT ASSEMBLIES AS WELL AS THE ASSIGNMENT OF ABSOLUTE ADDRESSES TO
RELOCATABLE STRINGS OF CODE. THIS PROGRAM PROVIDES DIAGNOSTICS ON ASSEMBLY
OVERLAP, UNSATISFIED EXTERNAL REFERENCES, AND MULTIPLE DEFINED EXTERNAL
SYMBOLS. (DAN 134) (3) A PROGRAM WHICH PRODUCES ABSOLUTE MACHINE CODE FROM A
RELOCATABLE CODE OBJECT PROGRAM. (NASA)

LOGIC EQUATION GENERATOR
A COMPUTER PROGRAM USED TO AUTOMATICALLY RECONSTRUCT ARITHMETIC TEXT AND TO
FLOWCHART ASSEMBLY LANGUAGE PROGRAMS. ONE SUCH PROGRAM TRANSLATES ASSEMBLY
LANGUAGE INSTRUCTIONS INTO A MACHINE-INDEPENDENT MICROPROGRAMMING LANGUAGE
AND BUILDS THE MICROPROGRAMMING STATEMENTS INTO A NETWORK IN WHICH FLOW OF
CONTROL IS ANALYZED AND EQUATIONS RECONTRUCTED. (DAN 134)

LOGIC ERROR
AN ERROR IN A PROGRAM PROCEDURE, AS OPPOSED TO AN ERROR IN A PROGRAM
FUNCTIONAL SPECIFICATION. (DAN 1153)

LOGICAL COMPLEXITY
LOGICAL COMPLEXITY IS A MEASURE OF THE DEGREE OF DECISION-MAKING LOGIC
WITHIN A SYSTEM. (DAN 781) (2) PERHAPS SYNONOMOUS WITH COMPLEXITY. (3) THE
DEGREE OF DECISION LOGIC IN A COMPUTER PROGRAM. (NASA)

LOGICWARE
THE LOGICAL SEQUENCE OF INSTRUCTIONS CONTROLLING THE EXECUTION SEQUENCE DONE
BY THE HARDWARE. SEE ALSO DATAWARE. (DAN 781)

LOGISTICS APPLICATIONS
USE OF SOFTWARE SYSTEMS TO FACILITATE TRANSPORTATION AND SUPPLY AND THE
MOVEMENT OF PERSONNEL IN ANY OF THE BRANCHES OF THE ARMED FORCES. (CAN 382)

LOOK-AHEAD DESIGN PRINCIPLE
THE PRINCIPAL BY WHICH A BASELINE OR PRELIMINARY DESIGN (OR PROGRAM
ARCHITECTURE) IS DEVELOPED, WHICH IDENTIFIES AND SKETCHES THE KEY DETAILS OF
THE REMAINING WORK TO BE DONE TO ASSURE THAT THE SUBSEQUENT DETAILED
IMPLEMENTATION WILL BE PROPER WHEN VIEWED IN RETROSPECT. (DAN 1153)

LOOP
(ISO) A SET OF INSTRUCTIONS THAT MAY BE EXECUTED REPEATEDLY WHILE A CERTAIN
CONDITION PREVAILS. IN SOME IMPLEMENTATIONS, NO TEST IS MADE TO DISCOVER
WHETHER THE CONDITION PREVAILS UNTIL THE LOOP HAS BEEN EXECUTED ONCE.

LOOP ASSERTION
A LOOP ASSERTION IS AN ASSERTION ASSOCIATED WITH A POINT IN A PROGRAM LOOP.
FLOYD'S METHOD REQUIRES THAT EVERY LOOP IN A PROGRAM TO BE VERIFIED BE "CUT"
BY A LOOP ASSERTION...ALSO SEE - ASSERTION, INVARIANT (SET)

LOOP BODY
(1) THE PART OF A LOOP THAT ACCOMPLISHES ITS PRIMARY PURPOSE. (2) IN A
COUNTER, A PART OF THE LOOP CONTROL. (3) CONTRAST WITH LOOP
CONTROL.(ANSI-X3)

LOOP CONTROL

62 h

(1) THE PARTS OF A LOOP THAT MODIFY THE LOOP CCTROL VARIABLES AND DETERMINE
WHETHER TO EXECUTE THE LOOP BODY OR EXIT FROM THE LOOP. (2) CONTRAST WITH
LOOP BODY... SEE ALSO: CONTROL STRUCTURES. (ANSI-X3)

LOOP INITIALIZATION
THE PARTS OF A LOOP THAT SET ITS STARTING VALUES. (ANSI-X3)

LOOP-CONTROL VARIABLE
A VARIABLE THAT AFFECTS THE EXECUTION OF INSTRUCTIONS IN THE LOOP bODY AND
IS MODIFIED BY A LOOP CONTROL. SEE ALSO: CONTROL STATEMENTS. (ANSI-X3)

MACHINE CYCLE
AN ALGORITHM WHICH DEFINES A SEQUENCE OF OPERATIONS PERFORMED BY AN ABSTRACT
MACHINE TO DETERMINE WHICH ADDITIONAL OPERATIONS ARE TO BE PERFORMED AND TO
WHICH DATA OBJECTS THEY ARE TO BE APPLIED. IF AN ABSTRACT MACHINE IS DEFINED
AS HAVING A MACHINE CYCLE, THAT MACHINE CYCLE IS EXECUTED REGULARLY AND
WHENEVER THE ABSTRACT MACHINE HAS COMPLETED THE PERFORMANCE OF THE OPERATION
CALLED FOR BY THE PREVIOUS MACHINE CYCLE. (ABBOTT)

MACHINE LANGUAGE
A LANGUAGE, USING SEQUENCES OF O'S AND 1'S TO CONVEY INFOkkATION AND
INSTRUCTIONS TO A COMPUTER, AND REQUIRING NO TRANSLATION PRIOR TO
INTERPRETATION BY THE COMPUTER. (NASA)

MACHINE WORDS
NUMBER OF WORDS IN MAIN MEMORY THAT A COMPONENT OCCUPIES AT ONE TIME. (SEL)

MACRO
A MACRO IS A SINGLE INSTRUCTION IN A SOURCE LANAGUAGE THAT IS REPLACED BY A
DEFINED SEQUENCE OF SOURCE INSTRUCTIONS IN THE SAME LANGUAGE. THE MACRO MAY
ALSO SPECIFY VALUES FOR PARAMETERS IN THE INSTRUCTIONS THAT ARE TO REPLACE
IT. DEFAULT VALUES MAY EXIST FOR THE PARAMETERS. (ANSI-X3H) (2) A ILST
REPLACEMENT MECHANISM WHEREBY A PREDEFINED SEQUENCE OF ASSEMBLY LANGUAGE
STATEMENTS ARE INSERTED WHEREVER PRESCRIBED DURING THE TRANSLATION PROCESS.
(NASA)

MACRO FACILITY
THE CAPABILITY TO DEFINE AND USE MACROS. (ANSI-X3HI)

MACROPROCESSORS
iN ASSEMBLY LANGUAGE MACROPROCESSOR ALLOWS A PROGRAMMER TO DEFINE A SEQUENCE
OF STATEMENTS IN A PROGRAMMING LANGUAGE, CATALOG THE ENTIRE SEQUENCE UNDER A
SINGLE NAME, AND LATER RETRIEVE THE SEQUENCE BY USING ONLY ITS NAME. THE
SEQUENCE IS GENERALLY INSERTED DIRECTLY IN A PROGRAM AS PART OF THE ASSEMBLY
PROCESS. FEATURES OF A MACROPROCESSOR MAY INCLUDE: RECOGNIZING THE
OCCURRENCE OF MACRODEFINITIONS; DELETING MACRO DEFINIFIONS FROM A TEXT
STRING AND STORING THEM IN A TABLE; RECOGNIZING THE OCCURRENCE OF A
MACRO-CALL SUBSTITUTING A MACRO BODY IN PLACE OF A NAME IN A TEXT STRING;
HANDLING DUPLICATE DEFINITIONS; SIGNALLING AN ERROR FOR A MACRO CALL ON A
NON-EXISTENT DEFINITION; PARAMETER PASSING; AND CONDITIONAL CAPACILITIES.
(DAN 753)

MAIN

A MAIN IS A PROGRAM "UNIT" WHICHCONTAINS AT LEAST ON EXECUTABLE STATEMENT

63

AND WHICH HAS A STARTING ADDRESS FOR PROGRAM EXECUTION... NORMALLY THE "MAIN
PROGRAM UNIT" IS THAT SET OF INSTRUCTIONS THAT DETLRNINES THE BASIC SEQUENCE
OF CONTROL. (SET)

MAINTAINABILITY
CODE POSSESSES THE CHARACTERISTIC MAINTAINABILITY TO THE EXTENT THAT IT
FACILITATES UPDATING TO SATISFY NEW REQUIREMENTS OR TO CORRECT DEFICIENCIES.
THIS IMPLIES THAT THE CODE IS UNDERSTANDABLE, TESTABLE AND MODIFIABLE; E.G.
COMMENTS ARE USED TO LOCATE SUBROUTINE CALLS AND ENTRY POINTS VISUAL SEARCH
FOR LOCATIONS OF BRANCHING STATEMENTS AND THEIR TARGETS IS FACILITATED BY
SPECIAL FORMATS, OR THE PROGRAM IS DESIGNED TO FIT INTO AVAILABLE RESOURCES
WITH PLENTY OF MARGINS TO AVOID MAJOR REDLSIGN, ETC. (DAN 239) (2)
MAINTAINABILITY IS THE PROBABILITY THAT, WHEN MAINTENANCE ACTION IS
INITIATED UNDER STATED CONDITIONS, A FAILED SYSTEM WILL BE RESTORED TO
OPERABLE CONDITION WITHIN A SPECIFIED TIME. DAN 781)

MAINTAINABILITY MEASUREMENT
THE PROBABILITY THAT WHEN MAINTENANCE ACTION IS INITIATED UNDER STATED
CONDITIONS, A FAILED SYSTEM WILL BE RESTORED TO OPERABLE CONDITION WITHIN A
SPECIFIED TIME. (DAN 233)

MAINTAINABLE
A SOFTWARE PRODUCT IS MAINTAINABLE TO THE EXTENT THAT IT CAN BE CHANGED Tb
SATISFY NEW REQUIREMENTS OR TO CORRECT DEFICIENCIES... SURE OF THE
CHARACTERISTICS WHICH INDICATE THE EXTENT TO WHICH A SOFTWARE PRODUCT IS
MAINTAINABLE ARE: (A) EASE OF MODIFYING ITS DOCUMiENTATION; E.G. INSERTIONS
AND DELETIONS CAN BE MADE WITHOUT RENUMBERING OTHER PAGES, AND REVISION
RECORDS ARE AVAILABLE. (B) CODE MODIFICATIONS ARE TRACEABLE TO ANY PREVIOUS
STATE (E.G. SOURCE CODE LINES SEQUENTIALLY NUMBERED, AND COMMENT MARKS USED
TO CONVERT PREVIOUSLY EXECUTABLE SOURCE CODE STATEMENTS TO "COMMENTS" WHICH
REMAIN IN THE LISTING AS A CHANGE RECORD). (C) DOCUMENTATION INCLUDES
CROSS-REFERENCES OF VARIABLE NAMES WITH SUBROUTINES IN WHICH THEY ARE USED.
AND SUBROUTINES CALLING SEQUENCES. (D) COMMENTS ARE USED TO LOCATE
SUBROUTINE CALLS AND ENTRY POINTS. (E) SOURCE CODE FORMAT FACILITATES VISUAL
SEARCH FOR LOCATIONS OF BRANCHING STATEMENT AND THEIR TARGETS.
ALTERNATIVELY, UP-TO-DATE FLOWCHARTS ARE AVAILABLE. ALSO SEE -

UNDERSTANDABLE, TESTABLE, AND MODIFIABLE. (SET)

MAINTENANCE
(ISO) ANY ACTIVITY, SUCH AS TESTS, MEASUREMENTS, REPLACEMENTS, ADJUSTMENTS,
AND REPAIRS, INTENDED TO ELIMINATE FAULTS OR TG KEEP A FUNCTIONAL UNIT IN A
SPECIFIED STATE. (ANSI-X3) (2) ACTIVITY WHICH INCLUDES THE DETECTION AND
CORRECTION OF ERRORS AND THE INCORPORATION OF MODIFICATIONS TO ADD
CAPABILITIES AND/OR IMPROVE PERFORMANCE. (SET) SEE ALSO PREVENTIVE
MAINTENANCE, CORRECTIVE MAINTENANCE (3) SOFTWARE MAINTENANCE - THE PROCESS
OF MODIFYING EXISTING OPERATIONAL SOFTWARE WHILE LEAVING ITS PRIMARY
FUNCTION INTACT. (NASA) (4) ALTERATIONS TO SOFTWARE DURING THE POST-DELIVERY
PERIOD IN THE FORM OF SUSTAINING ENGINEERING OR MODIFICATIONS NOT REQUIRINC
A REINITIATION OF THE SOFTWARE DEVELOPMENT CYCLE. (DAN 1153)

MAINTENANCE COSTS 4
FOR ERROR CORRECTION, PROGRAM MODIFICATION, OR ANY OTHER ACTIVITY REFERRED
TO AS MAINTENANCE.

64

-b• a

MAINTENANCE SOFTWARE
THE PORTIONS OF A DFCAS COMPUTER PROGRAM WHICH SUPPORT DFCAS MAINTENANCE,
SUCH AS BY IDENTIFICATION AND ANNUNCIATION OF FAILED HARDWARE COMPONENTS.
(NASA)

MAINTENANCE TOOLS
THE RESOURCES, (PERSONNEL TEST DRIVERS, SIMULATORS, ETC) NEEDED TO CARRY ON
MAINTENANCE ACTIVITIES. (DAN 335)

MAJOR ERROR
A CATASTROPHIC EVENT WHICH INTERRUPTS OR COULD INTERRUPT MOST OR ALL MAJOR
SYSTEM FUNCTIONS, E.G. AN INFINITE LOOP, SYSTEM CRASH, A MAJOR MEMORY
OVERFLOW, A DATA BASE CORRUPTION, ETC. (DAN 31)

MANAGEMENT
SOFTWARE MANAGEMENT INCLUDES THE PHASES LIFE CYCLE ANALYSIS, REQUIREMENTS
ANALYSIS, STRUCTURED DESIGN, EXTERNAL DOCUMENTATION, INTEGRATION OF
MANAGERIAL AND TECHNICAL ISSUES. (DAN 273) (2) A TERM THAT INDICATES
METHODOLOGY, TOOLS, AND PROCEDURES. (DAN LD7) (3) SOFTWARE MANAGEMENT
CONSISTS OF ALL THE TECHNICAL AND MANAGEMENT ACTIVITIES, DECISIONS, AND
CONTROLS THAT ARE DIRECTLY REQUIRED TO PURCHASE, PRODUCE, OR MAINTAIN
SOFTWARE THROUGHOUT THE USEFUL LIFE OF A COMPUTER SYSTEM OR SERVICE. (DAN
1237)

MANAGEMENT CONTROL AND PROJECT VISIBILITY
THOSE PROCESSES THAT MONITOR THE PROJECT'S STATUS IN RESPLCT TC PLANNED
LEVELS OF SCHEDULE, COST, AND PERFORMANCE, AND TAKE CORRECTIVE ACTION IF
NECESSARY. (DAN LD7)

MANAGEMENT FUNCTIONS
ALTHOUGH THE MANAGEMENT PROCESS HAS BEEN DESCRIBED IN MANY WAYS. FOUR BASIC
FUNCTIONS HAVE RECEIVED GENERAL ACCEPTANCE - PLANNING, ORGANIZING
CONTROLLING AND COMMUNICATING. I PLANNING. THE PROCESS OF DETERMINING THE
PROJECT OBJECTIVES AND THE POLICIES, PROGRAMS, PROCEDURES AND METHODS FOR
ACHIEVING THEM. THE PLANNING FUNCTION MUST PROVIDE A FRAMEWORK FOR DECISION
MAKING. 2. ORGANIZING. THE PROCESS OF DETERMINING THE ACTIVITIES REQUIRED TO
ACHIEVE THE OBJECTIVES OF A PROGRAMMING PROJECT, THE DEPARTMENTATION OF
THESE ACTIVITIES, AND THE ASSIGNMENT OF AUTHORITY AND RESPONSIBILITY FOR
THEIR PERFORMANCE. 3. CONTROL. THE PROCESS OF ASSURING THAT THE VARIOUS
COMPONENTS OF A PROJECT ARE PERFORMING IN ACCORDANCE WITH THE PLAN. CONTROL
IS ESSENTIALLY THE MEASUREMENT AND MODIFICATION (IF NECESSARY) OF COMPONENT
ACTIVITIES TO ASSURE THE ACCOMPLISHMENT OF THE OVERALL PLAN. 4.
COMMUNICATIONS. THE PROCESS OF TRANSFERRING INFORMATION AMONG DECISION
MAKERS THROUGHOUT THE PROJECT. (DAN141-MCDIFIED)

MANAGEMENT STATISTICAL DATA
GENERAL NAME APPLIED TO ALL THE DATA COLLECTED AND ACCUMLATED BY THE PSL FOR
THE PURPOSE OF PRODUCING MANAGEMENT REPORTS INCLUDING BOTH PLAN AND ACTUAL
DATA. (DAN 137)

MANAGEMENT STATISTICAL DATA BASE
A DATA BASE CONTAINING MANAGEMENT STATISTICAL DATA FOR AN ONGOING
PROGRAMMING PROJECT. (DAN 137)

65

MANAGEMENT TOOLS AND TECHNIQUES
ALL TOOLS AND TECHNIQUES UTILIZED IN CARRYING OUT THOSE MANAGEMENT FUNCTIONS
REQUIRED TO OVERSEE THE DEVELOPMENT, MAINTENANCE, OR USE OF SOFTWARE.

MANPOWER
THE SUM, OVER THE NUMBER OF PEOPLE, OF THE NUMBER OF HOURS PER PERSON
CHARGED TO THE CONTRACT, OR PROJECT. (SEL) (2) SEE ALSO MAN-UNITS.

MAN-DAY
SEE MAN-UNITS

MAN-HOUR
SEE MAN-UNITS

MAN-MONTH
SEE MAN-UNIT

MAN-UNITS
A CONCEPT USED TO ESTIMATE OR MEASURE HUMAN ENERGY TO BE EXPENDED OR WHICH
HAS BEEN EXPENDED ON A PARTICULAR PROJECT. THE CONCEPT IS ULTIMATELY BASED
ON THE LENGTH OF A WORKING DAY, 6 OR 8 HOURS (PRODUCTIVE TIME OR CALENDER
TIME). THUS IF A MAN-DAY IS 6 HOURS, 5 DAYS OR 30 MAN-HOURS IS A MAN-WEEK;
48 MAN-WEEKS OR 1440 MAN-HOURS IS A MAN-YEAR; 4 MAN-WEEKS OR 120 MAN-HOURS
IS A MAN-MONTH. A SIMILAR SET OF CORRESPONDENCES CAN BE CONSTRUCTED BASED ON
8 HOURS (OR ANY OTHER NUMBER) PER DAY.

MAN-YEAR
SEE MAN-UNIT

MANUAL-BASED TESTING
TESTING THAT IS USUALLY DIRECTED AT EVALUATING BOTH THE DESIGN AND THE
PRODUCT (I.E. PROGRAMS AND DOCUMENTATION). THE DESIGN IS USUALLY EVALUATED
FROM DOCUMENTS CONTAINING INFORMATION SUCH AS FUNCTIONAL REQUIREMENTS,
SYSTEM SPECIFICATIONS, AND PROGRAM SPECIFICATIONS. THE PRODUCT EVALUATION
USUALLY INVOLVES REVIEW OF THE COMPUTER PROGRAMS AND THE DOCUMENTATIGN
DESCRIBING THE PROGRAMS OR SYSTEMS. (DAN 154)

MAP PROGRAM
A COMPUTER PROGRAM USED TO PROVIDE LOCATION AND/OR SIZE INFORMATION ABOUT
ALL OR SELECTED PARTS OF THE TARGET SYSTEM, OR ABOUT DEVICE-RESIDENT DATA.
(DAN 134)

MARKOV MODEL
INDEXING TERM. REFERS TO THE MATHEMATICAL METHODOLOGY WHICH IS USED TO
CONSTRUCT, OR WHICH IS THE FORM ASSUMED BY, A PARTICULAR MODEL.

MATHEMATICAL/NUMERICAL
THIS CATEGORY OF SOFTWARE COMPONENTS IS MEANT TO BE A MORE SPECIFIC CATEGORY
THAN THE SCIENTIFIC CLASS. IT CONTAINS THOSE COMPONENTS WHICH REFLLCT A
SPECIFIC ALGEBRAIC EXPRESSION OR MATHEMATICAL ALGORITHM. SUCH COMPONENTS AS
A DOT PRODUCT ROUTINE OR A NUMERICAL INTEGRATOR FALL INTO THIS CATECORY.
(SEL)

MAXIMUM LIKELIHOOD

66 -

A FUNCTION WHICH DESCRIBES THE NUMBER OF EXPECTED ERRORS LEFT IN A SOFTWARE
PACKAGE TO A GIVEN LEVEL OF CONFIDENCE. THE FUNCTION IS BASED ON THE NUMBER
OF ERRORS OBSERVED AND THE NUMBER CORRECTED. (DAN 296)

MAXIMUM LIKELIHOOD ESTIMATOR
THAT FUNCTION OF OBSERVED DATA THAT ESTIMATES AN UNKNOWN PARAMETER OF A
KNOWN OR ASSUMED PROBABILITY DISTRIBUTION FUNCTION AS THE VALUE THAT
MAXIMIZES THE PROBABILITY (DENSITY) FUNCTION ON THE OBSERVED DATA. (DAN
1153)

MAXIMUM SPACE
TOTAL AMOUNT OF MACHINE WORDS THAT THE SYSTEM PAY OCCUPY AT ONE TIME. (SEL)

MEASUREMENT
A NUMBER WITH At ASSOCIATED UNIT OF MEASURE WHICH DESCRIBES SOME ASPECT OF
SOFTWARE. SYNONOMOUS WITH METRIC.

MECHANICAL DEDUCTION
AUTOMATED OR SEMI-AUTOMATED VERIFICATION TOOL/TECHNIQUE WHICH IS USED TO
PROVE PROGRAM CORRECTNESS.

MEMORY MANAGEMENT
A SYSTEM OF ADAPTIVE CONTROL THAT ALLOCATES MEMORY AND SCHEDULES THE CENTRAL
PROCESSOR IN ORDER TO MAXIMIZE PERFORMANCE. (DAN 595)

MESSAGE

ANY COMMUNICATION SENT BETWEEN PERSONS OR PROCESSES. DATA INTENDED TO BE OR
HAVING BEEN TRANSMITTED BETWEEN A SOURCE AND DESTINATION

MESSAGE SWITCHING
THE COMPUTER-CONTROLLED TRANSMISSION OF MESSAG. , BETWEEN TWO OR MORE
POINTS, VIA COMMUNICATIONS FACILITIES, WHEREIN THE CONTENT OF THE MESSAGE
REMAINS UNALTERED. (FCC)

MESSAGE TRANSFER MODEL
A MODEL WHICH DESCRIBES A COMPONENT OR MODULE IN TERMS OF ITS INTERACTIONS
WITH OTHER COMPONENTS OR MODULES WHICH ARE AT ITS SAME LEVEL OF
DECOMPOSITION. A MESSAGE TRANSFER MODEL CAN BE USED AS A DESIGN OR
SPECIFICATION TECHNIQUE. (DAN 242)

METACOMPILERS
A COMPILER SYSTEM DESIGNED SPECIFICALLY TO IMPLEMENT (COMPILE) LANGUAGE
COMPILERS. (DAN LD7)

METALANGUAGE
A METALANGUAGE IS A FORMAL MECHANISM USED TO DESCRIBE, SPECIFICALLY, OTHER
LANGUAGES.

META-PROGRAMMING
THE PROCESS OF EXPRESSING PROBLEMS IN AN EXTENDED META-LANGUAGE, (LIKE BNF).
(DAN 874)

METRIC
A MEASURE OF THE LXTENT OR DEGREE TO WHICH THE SOFTWARE POSSESSES AND

67

EXHIBITS A CERTAIN CHARACTERISTIC, QUALITY, PROPERTY, OR ATTRIBUTE. (2) A
MEANINGFUL MEASURE OF THE EXTENT OR DEGREE TO WHICH AN ENTITY POSSESSES OR
EXHIBITS A PARTICULAR CHARACTERISTIC. (NASA)

MICROCODE
A SET OF CONTROL FUNCTIONS PERFORMED BY THE INSTRUCTION DECODING AND
EXECUTION LOGIC OF A COMPUTER WHICH DEFINES THE INSTRUCTION REPERTOIRE OF
THAT COMPUTER. MICROCODE IS NOT GENERALLY ACCESSIBLE BY THE PROGRAMMER. (DAN
370)

MICROCOMPUTER
A CLASS OF COMPUTER HAVING ALL MAJOR CENTRAL PROCESSOR FUNCVIONS CONTAINED
ON A SINGLE PRINTED CIRCIUT BOARD CONSTITUTING A STAND-ALONE MODULE.
MICROCOMPUTERS ARE TYPICALLY IMPLEMENTED BY A SMALL NUMBER OF LSI CIRCIUTS
AND ARE CHARACTERIZED BY A WORD SIZE NOT EXCEEDING 16 BITS, AND VERY LOW
COST, USUALLY UNDER $1.000.

MICROPROCESSOR
A SINGLE LSI CIRCUIT WHICH PERFORMS THE FUNCTIONS OF A CPU. SOME
CHARACTERISTICS OF A MICROPROCESSOR INCLUDE SMALL SIZE, INCLUSION IN A
SINGLE INTEGRATED CIRCUIT OR A SET OF INTEGRATED CIRCUITS AND LOW COST. (DAN
370)

MICROPROGRAM
A PROGRAM IMPLEMENTED IN MICROCODE. (DAN 370) (2) A SEQUENCE OF
INSTRUCTIONS, HARDWIRED IN A COMPUTER AND OPERATING ON INEIVIDUAL BITS CF
DIGITAL WORDS, WHICH THE COMPUTER USES TO INTERPRET MACHINE LANGUAGE
INSTRUCTIONS. (NASA)

MICRORELIABILITY MODEL
A RELIABILITY MODEL WHICH MEASURES THE RELIABILITY OF THE SEPARATE MODULES
OF A PROGRAM BEFORE THE MODULES ARE COMBINED INTO A SOFTWARE SYSTEM. (DAN
299)

MINICOMPUTER
INDEXING TERM. MAY REFER TO DESIGN/DEVELOPMENT OF SOFTWARE FUR A
MINICOMPUTER SYSTEM, OR TO THE USE OF MINICOMPUTERS IN A SOFTWARE
DEVELOPMENT PROJECT (E.G., AS AN EMULATOR OR SIMULATOR), OR TO A
COST-BENEFIT ANALYSIS OF MINICOMPUTERS VS. MAINFRAME COMPUTERS AS COMPONENTS
OF A HARDWARE/SOFTWARE SYSTEM.

MINOR ERROR
A MARGINAL EVENT WHICH ALLOWS OR COULD ALLOW SOME PORTION OF THE SYSTEM TO
OPERATE PROPERLY WHILE INTERRUPTING OTHERS, E.G. SOME MISSING OUTPUT, SOME
WRONG OUTPUT, AN INACCURATE COMPUTATION, A RECOVERABLE TRANSIENT ERROR, ETC.
(DAN 31)

MISSING PATH ERROR
AN ERROR IN WHICH A REQUIRED PREDICATE DOES NOT APPEAR IN THE GIVEN PROGRAM
TO BE TESTED. ESPECIALLY IF THIS PREDICATE WERE AN EQUALITY, NO TESTING
STRATEGY COULD SYSTEMATICALLY DETERMINE THAT SUCH A PREDICATE SHOULD BE
PRESENT. (DAN 842)

MISSION DATE

68

I t

DATE WHEN SYSTEM MUST BE OPLRATIONAL. (SLL)

MISTAKE
A HUMAN ACTION PRODUCING AN UJNINTENDEL RLSULT. (LAN LL4)

MODE
A WAY OF OPERATING A PROGRAM TO PERFORM A CLFTAI N SUBSET OF THE FUNCTIONS
THAT THE ENTIRE PROGRAM CAN PERFORM, AS SELECTLD BY CONTROL DATA OR
OPERATING CONDITIONS. OFTEN, THE MODE OF A PROCRAM WILL BE DEFINED AS
PRO RAM STATES, WITH TRANSITIONS ANNOTATED TO DELINEATE EVENTS CAUSING THE
PASSAGES BETWEEN MODES OF OPERATION. (DAN 1153)

MODEL
A MODEL IS AN ABSTRACTIOUi OF A REAL WORLD PROCESS. (DAN 238) SEE ALSO:
BEHAVIORAL MODEL, STRUCTURAL MODEL.

MODELING AND SIMULATION TOOLS
TOOLS USED FOR TRADE-OFF STUDIES AND TO INVESTIGATE PARTICULAR ABSTRACTIONS
AND APPROCACHES FOR THE SYSTEM DESIGN. THEY ARE USEFUL FOR ANALYZING AND
MODELING PARTICULAR APPROACHES TO SYSTEM DESIGNS. EXAMPLES INCLUDE: CASE,
GPSS, NODLIT, SCERT, AND SPCL. (DAN LD7)

MODERN PROGRAMMING PRACTICES
A GENERAL TERM ENCOMPASSING VARIOCUS PROCEDURES, STANDARDS, PROGRAMMING AND
DESIGN TECHNIQUES WHICH EVOLVED THROUGH THE IMPETUS GENERATED BY THE MOVE
TOWARD STRUCTURED PROGRAMMING. PROGRAMMING PRACTICES DESCRIBED AS "MODLRN"
USUALLY INCLUDE STRUCTURED PROGRAMMING, TOP-DOWN PROGRAM DESIGN, CHIEF
PROGRAMMER TEAM, MODULAR PROGRAMMING, AND DEVELOPMENT SUPPORT LIBRARIAN. (2)
A DYNAMICALLY CHANGING TERM WITH SELF-EXPLANATORY DEFINITION. AT PRESENT,
'MODERN PROGRAMMING PRACTICES' IS CONNOTATIVELY EQUIVALENT WITH USING
HIERARCHIAL STRUCTURED-PROGRAMMING CONCEPTS, WITH, SOMETIMES, OCCASIONAL
ASSOCIATION WITH EASILY VERIFIABLE CONSTRUCTSFOM THE LANGUAGE BEING USED.

MODIFIABILITY
CODE POSSESSES THE CHARACTERISTIC M.ODIFIABILITY TO THE EXTENT THAT IT
FACILITATES THE INCORPORATION OF CHANGES, ONCE THE NATURE OF THE DESIRED
CHANGE HAS BEEN DETERMINED. NOTE THE HIGHER LEVEL OF ABSTRACTNESS OF THIS
CHARACTERISTIC AS COMPARED WITH AUGMENTABILITY. (2) MODIFIABILITY IMPLIES
CONTROLLED CHANGE, IN WHICH SOME PARTS OR ASPECTS REMAIN THE SAME WHILL
OTHERS ARE ALTERED, ALL IN SUCH A WAY THAT A DLSIREL NEW RESULT IS OBTAINED.
(DAN 109)

MODIFIABLE
MODIFIABILITY IS THE CHARACTERISTIC OF BEING EASY TO MODIFY...MOIDIFIABILITY
OR TO BE MODIFIABLE IMPLIES CONTROLLED CHANGE IN WHICH SOME PARTS (R ASPECTS
REMAIN THE SAME, WHILE OTHERS ARE ALTERED; ALL IN SUCH A WAY THAT A DESIRED
NEW RESULT IS OBTAINED. ,ODIFIABILITY IS ONE ASPECT OF MAINTAINABLE. ALSO
SEE - MAINTAINABLE. (SET)

MODIFICATION
THE PROCESS OF ALTERING A PROGRAM AND ITS SPECIFICATION SO AS () PERFORM
EITHER A NEW TASK OR A DIFFERENT BUT SIMILAR TASK. IN ALL CASES, lli
FUNCTIONAL SCOPE OF A PROGRAM UNDER MODIFICAIIUN CHANGES. (LAN 1153)

69

MODIFICATION PROCEDURES
THE FORMS, CHANNELS FOR APPROVAL, JUSTIFICATION, INITIATION, AND HANDLING OF
REQUESTS FOR SOFTWARE MODIFICATION. (DAN 300)

MODULAR DECOMPOSITION
MODULAR DECOMPOSITION IS THE PROCESS OF BREAKING A LARGE PROGRAM INTO SMALL
MODULES. ALSO SEE - MODULARITY, PROGRAM MODULE. (SET) (2) TO ISOLATE THE
ENTIRE SYSTEM INTO INDEPENDENT PARTITIONS, EACH MODULE IS CONSTkUCTED TO
WORK WITH OTHERS ON CONTROL SIGNALS AND DATA TRANSFERS, BUT TO BE UNINVOLVED
IN THE DETAILED INTERNAL STRUCTURE OF OTHER MODULES. WITH INTER-MODULE
INTERFACES CAREFULLY SPECIFIED, THE RELATIVELY INUEPENDENT MODULES BECOME
EASIER TO CODE,_ TEST, AND LATER CHANGE THAN MORE bEPENDENT NODULES. (DAN
227) (3) THE PROCESS OF BREAKING A LARGE PROGRAM INTO SMALL MODULES THAT
PERFORM COMPLETE FUNCTIONS.

MODULAR PROGRAMMING
THE TECHNIQUE OF PRODUCING RELATIVELY SMALL, EASILY INTERCHANGEABLE COMPUTER
ROUTINES WHICH MEET CERTAIN STANDARDIZED INTERFACE REQUIREMENTS. THIS
TECHNIQUE MAKES IT EASIER TO DEVELOP AND VERIFY COMPLETED COMPUTER PROGRAMS.
MODULARITY IS ACCOMPLISHED BY BREAKING THE PROGRAM INTO LIMITED
LINE-SEGMENTS THAT PERFORM COMPLETE FUNCTIONS AND ARE THEREFORE, COMPLETELY
UNDERSTANDABLE IN THEMSELVES. AIDS THAT HELP IMPLEMENT THESE TECHNIQUES ARE
STANDARDS AND PROCEDURES. (DAN 134)

MODULARITY
MODULARITY IS THE FRAGMENTATION OF A PROGRAM INTO CONVENIENT DISCRETE PIECES
CALLED MODULES...THE MAIN GOAL OF MODULARIZING A PROGRAM IS TO MAKE POSSIBLE
THE MODIFICATION OF A SINGLE MODULE WITHOUT AFFECTING THE OTHER MODULES. IN
THE CONTEXT OF SOFTWARE ENGINEERING, THIS IS CONSIDERED AS A QUALITY
CHARACTERISTIC OF PROGRAMMING. THE CRUCIAL ELEMENTS ARE: A) SMALL (THE SIZE
OF THE MODULE CANNOT BE QUANTIFIED AND MOST PROGRAMMERS PREFER TO FOLLOW
THEIR OWN INTUITIVE APPROACH TO MODULARITY, B) SELF-CONTAINMENT, C)
INDEPENDENCE (MEANING A PROGRAM IN WHICH ANY LOGICAL PORTION CAN BE CHANGED
WITHOUT AFFECTING THE REST OF THE SYSTEM). ALSO A MODULAR PROGRAM SHOULD
HAVE MODULES THAT HAVE ONLY ONE ENTRY POINT AND ONE EXIT POINT. ALSO SEE -
PROGRAM MODULE (SET) (2) MODULARITY DEALS WITH HOW THE STRUCTURE OF AN
OBJECT CAN MAKE THE ATTAINMENT OF SOME PURPOSE EASIER. MODULARITY IS
PURPOSEFUL STRUCTURING. (DAN 109)

MODULARIZATION
REPRESENTING A SYSTEM AS A CONFIGURATION OF MODULES, WITH EACH MODULE BEING
A LOGICAL CONFIGURATION OF INDEPENDENTLY FAILING COMPONENTS. (DAN 289)

MODULE
A PROGRAM UNIT THAT IS DISCRETE AND IDENTIFIABLE WITH RESPECT TO COMPILING,
COMBINING WITH OTHER UNITS AND LOADING. (ANSI-X3) (2) A PROGRAM: (A)
CHARACTERIZABLE EXTERNALLY AS PERFORMING A SINGLE OPERAIION; AND (B)
CHARACTERIZABLE INTERNALLY AS LIMITED IN COMPLEXITY. THE COMPLEXITY OF A
MODULE MAY BE MEASURED IN TERMS OF: I) THE DEPTH OF NESTING OF ITS CONTROL
STRUCTURES; II) THE TOTAL NUMBER OF ITS CONTROL SEGMENTS (I.E. CONTROL
STRUCTURES); AND III) THE TOTAL NUMBER OF ITS OPERATIONS. (ABBOTT) (3) A
PORTION OF A COMPUTER PROGRAM WHICH PERFORMS IDENTIFIABLE FUNCTIONS IN A
SOMEWHAT AUTONOMOUS MANNER, AND WHICH IS USUALLY CONSTRAINED TO SOME MAXIMUM
SIZE. (NASA) (4) MODULES ARE CHARACTERIZED BY LEXICAL BINDING, IDENTIFIABLE

70

PROPER BOUNDARIES, NAMED ACCESS, AND NAMED REFERENCE. THE WORD "MODULE" MAY
APPLY TO A SUBPROGRAM, SUBROUTINE, ROUTINE, PROGRAM, MACRO, OR FUNCTION. A
"COMPILE MODULE" IS A MODULE OR SET OF MODULES THAT ARE DISCRETE AND
IDENTIFIABLE WITH RESPECT TO COMPILING, COMBINING WITH OTHER UNITS, AND
LOADING. (DAN 1153) SEE ALSO: PROGRAM MODULE

MODULE ANALYSIS
INDEXING TERM. MAY REFER TO ANALYSIS BEFORE IMPLEMENTATION AS PART OF THE
DESIGN OR REQUIREMENTS PHASES OR TO ANALYSIS PERFORMED TO EXTRACT
INFORMATION ABOUT VARIOUS ASPECTS OF THE MODULE DURING TESTING. THE ANALYSIS
MAY BE MANUAL OR AUTOMATED.

MODULE SIZING
DETERMINATION OF THE OPTIMUM MODULE SIZE TO MINIMIZE COST AND MAXIMIZE
RELIABILITY, PROGRAMMER PRODUCTIVITY, COMPILER COST, ETC. (DAN 338)

MODULE TEST
TEST OF A SINGLE MODULE (SEL)

MODULE TESTING
THE INTENT OF THE MODULE OR UNIT TEST IS TO FIND DISCREPANCIES BETWEEN THE
MODULE'S LOGIC AND INTERFACES, AND ITS MODULE EXTERNAL SPECIFICATIONS. (THE
DESCRIPTION OF THE MODULE'S FUNCTION, INPUTS, OUTPUTS, AND EXTERNAL
EFFECTS). THE STEP OF COMPILING THE MODULE SHOULD ALSO BE CONSIDERED AS PART
OF THE MODULE TEST SINCE THE COMPILER DETECTS MOST SYNTAX ERRORS AND A FEW
SEMANTIC OR LOGIC ERRORS. (DAN 286)

MONITOR
A MONITOR DETERMINES WHICH OF TWO OR MORE PROCESSES COMPETING FOR CONTROL IN
ORDER TO EXECUTE HAS PRIORITY. IT ALLOWS THAT WHICH HAS PRIORTY TO TAKE
CONTROL AND EXECUTE AND PLACES THE OTHER PROCESS(ES) ON A QUEUE TO AWAIT
THEIR TURN TO TAKE CONTROL AND EXECUTE (DAN 420) (2) MONITORS MAY BE
CONSIDERED AS RESOURCE ALLOCATORS USING THE SHARED VARIABLES TO ADMINISTER
THE RESOURCE ALLOCATION POLICY. (DAN 422)

MOVE
TO READ DATA FROM A SOURCE AND TO WRITE THE SAME DATA ELSEWHERE IN A
PHYSICAL FORM WHICH MAY DIFFER FROM THAT OF THE SOURCE. A MOVE DIFFERS FROM
A COPY IN THAT IT NEED NOT PRESERVE THE SOURCE. (ANSI-X3HI)

MTS (MODULE TESTING SYSTEM)
AN AUTOMATIC SOFTWARE TEST DRIVER MARKETED BY MANAGEMENT SYSTEMS AND
PROGRAMMING LTD.

MULTICS
A COMMERCIAL OPERATING SYSTEM WHICH EVOLVED FROM A RESEARCH TIME-SHARING
SYSTEM. (A PART OF HONEYWELL)

MULTIPLE PROCESSOR
A COLLECTION OF PROCESSORS. MULTIPLE PROCESSORS ARE OFTEN USED TO EXECUTE
CONCURRENT PROCESSES. (ABBOTT) COMPARE WITH MULTIPROCESSOR.

MULTIPLEX
TO INTERLEAVE THE EVENTS OF TWO OR MORE ACTIVITIES. (ANSI-X3HI)

71* D

MULTIPROCESSING
SIMULTANEOUS EXECUTION BY TWO OR MORE PROCESSORS. (ANSI-X3HI) (2) A PROGRAM
EXECUTION THAT ALLOWS FOR SIMULTANEOUS EXECUTION OF A SHARED COPY OF A CODED
ELEMENT BY TWO OR MORE CPU'S. (DAN 1201)

MULTIPROCESSOR
A COMPUTER EMPLOYING TWO OR MORE PROCESSORS OF COMPARABLE CAPACITY UNDER THE
INTEGRATED CONTROL OF A SINGLE OPERATING SYSTEM WHEREIN ALL PROCESSORS SHARE
COMMON MEMORY AND INPUT/OUTPUT FACILITIES. (NASA)

MULTIPROGRAMMING
A MODE OF OPERATION THAT PROVIDES FOR THE INTERLEAVED EXECUTION OF TWO CP
MORE COMPUTER PROGRAMS BY A SINGLE CENTRAL PROCESSING UNIT. (2) PERTAINING
TO THE CONCURRENT EXECUTION OF TWO OR MORE COMPUTER PROGRAMS BY A COMPUTER.
(ANSI-X3) (3) THE CONCURRENT EXECUTION OF TWO OR MOPE FUNCTIONS AS THOUGH
EACH FUNCTION OPERATES ALONE. (ANSI-X3HI) (4) A PROGRA, DESIGN THAT ALLOWS
SUPPORT OF MANY FUNCTIONS SIMULTANEOUSLY AS THOUGH EACH FUNCTION OPERATES
ALONE. (DAN 1201)

MULTI-LEVEL OPERATING CONFIGURATION (OR SYSTEM)
AN OPERATING SYSTEM OR KERNEL THAT LETS PROGRAMS HAVING DIFFERENT LEVELS OF
DATA ACCESSIBILITY OPERATE CONCURRENTLY. LINES OF COMMUNICATION BETWEEN THE
CONCURRENT RUNNING PROGRAMS AND DATA ARE UNIDIRECTIONAL. A HIGH LEVEL
PROGRAM MAY ACCESS DATA FROM A LOWER LEVEL ONE, BUT THE REVERSE IS NOT TRUE.

MULTI-TASKING
THE CONCURRENT EXECUTION OF TWO OR MORE TASKS BY A COMPUTER. (ANSI-X3-HI)

MUSA'S MODEL
SOFTWARE RELIABILITY MODEL DEVELOPED BY JOHN NUSA OF DELL LABORATORIES,
WHIPPANY, NJ

MUST
(MULTIPURPOSE USER-ORIENTED SOFTWARE TECHNOLOGY) A NASA PROGRAMl WHOSE
OBJECTIVE IS TO CUT THE COST OF PRODUCING SOFTWARE BY PPOVIDING AN
INTEGRATED SYSTEM OF SUPPORT SOFTWARE TOOLS FOR USE THROuGHOUT THE RESEARCH
FLIGHT SOFTWARE DEVELOPMENT PROCESS. (DAN 327)

MUTUAL EXCLUSION
REFERS TO MONITORS AND PROCESS QUEUES. ALTHOUGH THE M.ONITOR IS SHARED ANONG
CONCURRENT PROCESSES, THE EXECUTION OF THE MONITOR PROCEDURES AND FUNCTIONS
EXCLUDE EACH OTHER IN TIME. MUTUAL EXCLUSION CAN BE IMPLEMENTED FOR MONITORS
BY THE USE OF BOOLEAN SEMAPHORES INITIALIZED TO THE VALUE TRUE. (DAN 422)

NAMED MODULE
A MODULE WHICH CAN BE INVOKED BY NAME (NANED ACCESS) AND WHICH INTERNALLY
MAY INVOKE SUBMODULES BY NAME (NAMED REFERENCE). SUCH INVOCATION IN THE
FLOWCHARTED DESIGN IS DENOTED BY THE METHOD OF "STRIPING" THE FLOWCHART
SYMBOL. (DAN 1153)

NATURAL LANGUAGE
(ISCU A LANGUAGE WHOSE RULES ARE BASED ON CURRENT USAGE WITHOUT BEING
EXPLICITLY PRESCRIBED. (ANSI-X3)

72

*r e

NATURAL LANGUAGE PROCESSING
A PART OF THE TREND TOWARD PEOPLE-ORIENTED MAN-COMPUTER INTERFACES, ATTEMPTS
TO ALLOW PEOPLE TO USE AN ENGLISH-TYPE LANGL,'JE - AS SPOKEN ENGLISH - TO
INTERACT WITH THE COMPUTER. (DAN 273)

NATURAL LANGUAGE THEORY
A MEASURE OF SOFTWARE COMPLEXITY WHICH LINKS KNOWN RESULTS FROM NATURAL
LANGUAGE AND INFORMATION THEORIES TO SOFTWARE COMPLEXITY yUESTIONS. (DAN
232)

NESTING
THE PRACTICE OF BUILDING AN OBJECT OF SOME SORT IN TLKMS OF OTHER OBJECTS OF
THE SAME SORT. (ABBOTT) (2) THE RECURSIVE APPLICATION OF THE IMBEDDING OF
STRUCTURES (PROCEDURAL OR DATA) INTO A HIERARCHY OF STRUCTURAL LEVELS OF
DEFINITION. (DAN 1153) SEE ALSO LEVEL OF NESTING.

NETWORK
CONNECTION OF TWO OR MORE NODES; IN "COMPUTER NETWORK", THE SPECIFIC NODES
CONSIST OF COMPUTERS, OR PROCESSING OR COMMUNICATIONS EQUIPMENT.

NONE USED
NO EXPLICIT TECHNIQUE WAS SPECIFIED TO BE USED. (SEL)

NON-DETERMINISM
CONVERSE OF DETERMINISM (ANSI-X3HI)

NON-PROCEDURAL
CONVERSE OF PROCEDURAL (ANSI-X3HI)

NON-PROCEDURAL SPECIFICATION
A SCHEME WHICH ALLOWS THE DEFINTION OF BEHAVIOR WITHCUT THE SPECIFICATION OF
AN ALGORITHM FOR ACHIEVING THE BEHAVIOR. (DAN 242)

N-VERSION PROGRAMMING
THE INDEPENDENT GENERATION OF N>2 FUNCTIONALLY EQUIVALENT PROGRAMS FROM THE
SAME INITIAL SPECIFICATION. THE N PROGRAMS POSSESS ALL THE NECESSARY
ATTRIBUTES FOR CONCURRENT EXECUTION, LURING WHICH COMPARISON VECTORS ARE
GENERATED BY THE PROGRAM AT CERTAIN POINTS. (DAN 315)

OBJECT PROGRAMV
A COMPUTER PROGRAM EXPRESSED IN MACHINE LANGUAGE, USUALLY THE RESULT OF
TRANSLATING A SOURCE PROGRAM BY AN ASSEMBLER OR COMPILER. (NASA)

OBJECT PROGRAM DATA
THE RESULTING FORM OF A SOURCE LANGUAGE PROGRAM AFTER PROCESSING BY A
COMPILER OR ASSEMBLER. THEY ARE ALSO CALLED OBJECT MODULES. THE OBJECT
PROGRAM IS IN A FORMAT SUITABLE FOR LOADING AND EXECUTION. IT MAY REQUIRE
ADDITIONAL PROCESSING BY A LINK LOADER OR LINK EDITOR. (DAN LD7)

OFFLINE PROCESSING
NON-INTERICTIVE PROCESSING (ANSI-X3HI)

ONLINE PROCESSING
INTERACTIVE PROCESSING, USUALLY BETWEEN A HUMAN AND COMPUTER. (ANSI-X3H1)

73

ON-BOARD PROCESSING
ALL SOFTWARE COMPONENTS THAT ARE BUILT FOR THE PURPOSE OF SATISFYING SOME
ON-BOARD PROCESSING NEED FALL INTO THIS CLASS. ALTHOUGH THE COMPONENT MAY BE
BUILT AND TESTED ON A COMPUTER WHICH IS NOT THE REAL FLIGHI COMPUTER IT
SHOULD BE CLASSIFIED AS 'ON-BOARD' IF THL FINAL DESTINATION IS THE OBC
(ON-BOARD COMPUTER). (SEL)

ON-LINE DEBUGGING
SEE INTERACTIVE DEBUG

ON-LINE TESTING
SEE INTERACTIVE DEBUG

OPAL
(OPERATIONAL PERFORMANCE ANALYSIS LANGUAGE) A HIGH LEVEL TEST LANGUAGE
DEVELOPED FOR THE ARMY. (DAN 390)

OPEN-ENDED FLEXIBILITY
SYNONOMOUS WITH ADAPTABILITY. (DAN 781)

OPERATING LEVELS
AN OPERATING LEVEL IS AN ENVIRONMENT IN WHICH PARTICULAR SETS OF OPERATIONS
HAVE PARTICULAR MEANINGS. (ANSI-X3H1)

OPERATING SYSTEM
A SYSTEM OF ROUTINES AND SERVICES THAT MONITORS, CONTROLS, ALLOCATES,
DEALLOCATES, AND MANAGES THE EXECUTION OF APPLICATIONS PROGRAMS AND OTHER
SYSTEMS ROUTINES AND THEIR USAGES OF SYSTEM RESOURCES. (DAN 1153) AN
OPERATING SYSTEM HAS AS FUNCTIONS: 1) CREATION OF OBJECTS, PROCESSES, FILES,
MODULES, SEGMENTS, 2) MANAGEMENT AND SHARING OF FILES, 3) MANAGEMENT OF
COMMUNICATIONS THROUGH SEGMENTS OR MAIL BOXES, 4) MEMORY MANAGEMENT, 5) CPU
MANAGEMENT, 6) INPUT/OUTPUT MANAGEMENT. (DAN 269)

OPERATING SYSTEM COMMAND AND RESPONSE LANGUAGE
(OSCRL) THE LANGUAGE USED TO EXPRESS COMMANDS THAT INITIATE PARTICULAR
ACTIONS OF AN OPERATING SYSTEM, AND TO EXPRESS RESPONSES CONVEYED BY THE
OPERATING SYSTEM. (ANSI-X3HI)

OPERATING SYSTEM DESIGN
THE PROCESS OF DESIGNING AN OPERATING SYSTEM.

OPERATION
A FUNCTION WHICH TRANSFORMS DATA OBJECTS FROM INPUT DOMAIN(S) INTO DATA
OBJECTS IN THE OPERATION'S OUTPUT DOMAIN (S). THE INPUT AND OUTPUT DOMAIN(S)
OF AN OPERATION ARE THE DATA TYPES OVER WHICH THE OPERATION IS DEFINED. AN
OPERATION ON ONE LEVEL OF ABSTRACTION MAY BE DEFINED BY AN ALGORITHM IN
TERMS OF OPERATIONS ON A LOWER LEVEL OF ABSTRACTION. (ABBOTT)

OPERATIONAL
THE STATUS GIVEN A SOFTWARE PACKAGE ONCE IT HAS COMPLETED CONTRACTOR TESTING
AND IT IS TURNED OVER TO THE EVENTUAL USER FOR USE IN THE APPLICATIONS
ENVIRONMENT. (DAN 21)

OPERATIONAL ENVIRONMENT

74

THE SET OF ALL EXTERNAL STIMULUS AND DATA SOURCES WITH WHICH A SOFTWARE
SYSTEM INTERFACES AND COMMUNICATES. (DAN 1201) SEE ALSO ENVIRONMENT.

OPERATIONAL EVALUATION
THE ANALYSIS OF A SYSTEM OPERATING IN ITS' REAL LIFE ENVIRONMENT. (DAN 1201)

OPERATIONAL RELIABILITY
THE RELIABILITY OF THE PROGRAM-AS-IT-PERFORMS AS OPPOSED TO THE RELIABILITY
OF THE PROGRAM-AS-IT-IS. (DAN 245)

OPERATIONAL SOFTWARE
THE PORTION OF A DFCAS COMPUTER PROGRAM, INCLUDING REAL TIME EXECUTIVE AND
APPLICATION SOFTWARE, WHICH IS DIRECTLY INVOLVED IN FLIGHT CONTROL AND
AVIONICS PROCESSING FUNCTIONS. (NASA)

OPERATIONAL TESTING
PERFORMING TESTS ON SOFTWARE IN ITS NORMAL OPERATING ENVIRONNENT. (DAN 1201)

OPERATOR
(1) AGENT PERFORMING AN ACTION. (2) SPECIFICALLY, OPERATOR MAY REFER TO A
HUMAN WHO INTERFACES THE ACTIONS NECESSARY TO KEEP THE COMPUTER COMPLEX
OPERATING BETWEEN THE USER OR USER INPUT AND THE MACHINE. (3) AN ABSTRACT
MACHINE WITH AN ONGOING MACHINE CYCLE. SEE ALSO: OPERATION

OPTIMIZATION
CHANGES IN THE SOURCE CODE TO IMPROVE PROGRAM PERFORMANCE - E.G. RUN FASTER
OR USE LESS SPACE. OPTIMIZATION CHANGES ARE NOT ERROR CORRECTION; HOWEVER,
IF A CHANGE IS MADE TO USE LESS SPACE TO CONFORM TO THE SPECIFIED SPACE
CONSTRAINT, THEN THE TERM "ERROR" APPLIES. (SEL) NOTE: EFFICIENCY IS A
QUALITY CHARACTERISTIC; OPTIMIZATION CAN BE A PROCESS WHICH INCREASES
EFFICIENCY.

OUTPUT ASSERTION
AN OUTPUT ASSERTION, USUALLY DENOTED BY THE GREEK LETTER PSI, IS A STATEMENT
THAT EXPRESSES A RELATION BETWEEN THE INPUT AND OUTPUT VALUES OF A PROGRAM.
AN OUTPUT ASSERTION IS USED IN CONJUNCTION WITH AN INPUT ASSERTION TO
SPECIFY FORMALLY THE INTENDED FUNCTION OF A PROGRAM. A PROGRAM IS SAID TO BE
TOTALLY CORRECT WITH RESPECT TO AN INPUT ASSERTION PHI AND OUTPUT ASSERTION
PSI IF IT HALTS SATISFYING PSI ON ALL INPUTS. (SET)

OVERLAY PROGRAM
A COMPUTER PROGRAM THAT ALLOWS SPECIFIC SYSTEM COMPONENTS (LOAD MODULES,
CORE, DATA BASE, ETC.) TO BE MODIFIED DURING EXECUTION. IN THE CASE OF
MODULES, A PROGRAM WITH AN ERROR CAN BE REPLACED IN CORE WITHOUT BRINGING
THE SYSTEM DOWN AND STARTING IT UP AGAIN. SYSTEM PARAMETERS THAT AFFECT
PERFORMANCE CAN BE VARIED DURING EXECUTION TO COMPARE VARIOUS PRIORITY,
TIMING, ETC. SCHEMES. (DAN 134)

PARAMETER
THE NAME OR VALUE OF INFORMATION TO BE USED. USED IN TWO SENSES IN A
PROCEDURE OR MACRO: 1) AS A NAME IN THE DEFINITION (A FORMAL PARAMETER), 2)
AS HAVING A SPECIFIC VALUE AS A PARTICULAR INVOCATION (AN ACTUAL PARAMETER).
(ANSI-X3HI)

75

p 1

PARANORMAL TERMINATION
UNSTRUCTURED ESCAPES (IN CONTROL) FROM A MODULE IN RESPONSE TO NORMAL EVENTS
OR CONDITIONS. MODULES HAVING PARANORMAL TERMINATIONS MAY YET EXHIBIT A FORM
OF STRUCTURED CONTROL FLOW, IF PROPERLY CONFIGURED INTO "PARANORMAL
EXTENSIONS" OF STRUCTURED PROGRAMMING. (DAN 1153)

PARSE
TO DECOMPOSE A PROGRAMMING UNIT (BLOCK, LINE, PHRASE, WORD) INTO A SET OF
ELEMENTARY SUBUNITS (LINES, WORDS, COMMANDS, CHARACTERS).

PARTIAL CORRECTNESS
A PROGRAM IS PARTIALLY CORRECT WITH RESPECT TO AN INTENDED FUNCTION IF, WHEN
EXECUTED ON ANY INPUT IN THE DOMAIN OF THAT FUNCTION, IT EITHER TERMINATES
RETURNING AS OUTPUT THE VALUE OF THE FUNCTION OR DOES NOT TERMINATE. PARTIAL
CORRECTNESS IS WEAKER THAN TOTAL CORRECTNESS, WHICH REQUIRES TERMINATION ON
EACH INPUT FOR WHICH THE INTENDED FUNCTION IS DEFINED. (SET) (2) PROGRAM
AGREES IN TOTAL WITH ITS FULL SET OF COMPLETE INPUT, OUTPUT, AND
INTERMITTENT ASSERTIONS; DIFFERS FROM TOTAL CORRECTNESS IN THAT TERMINATION
IS NOT PROVED. SEE ALSO: TOTAL CORRECTNESS.

PARTITIONING
A SOFTWARE ENGINEERING TECHNIQUE WHICH SEGMENTS THE SYSTEM INTO AREAS OF
RESPONSIBILITY FOR DESIGN AND DEVELOPMENT. (DAN 301)

PASCAL
A PROGRAMMING LANGUAGE HAVING RELIABILITY AS A MAJOR DESIGN OBJECTIVE.(LAN
389)

PATCH
AN OBJECT CODED PROGRAM CHANGE WRITTEN IN MACHINE CODE, AND INSERTED TO
OVERLAY LANGUAGE PRODUCED OBJECT CODE FOR TEMPORARY REPAIR OF A CODING ERROR
OR PROGRAM DISCREPANCY UNTIL THE CODED ELEMENT IS REPROCESSED AND
REGENERATED AS A SOURCE CODE CHANGE. (DAN 1201)

PATH ANALYSIS
A (1) A SOFTWARE TECHNIQUE WHICH SCANS SOURCE CODE IN ORDER TO DESIGN AN
OPTIMAL SET OF TEST CASES TO EXERCISE THE PRIMARY PATHS IN A SOFTWARE
MODULE. (DAN 142) (2) A TECHNIQUE WHICH DEFINES A PRACTICAL MEASURABLE MEANS
OF DETERMINING AN OPTIMAL NUMBER OF TEST CASES BY EXAMINING SOURCE CODE AND
DETERMINING THE MINIMUM SET OF PATHS WHICH EXERCISE ALL LOGICAL BRANCHES OF
A PROGRAM. (DAN LD7)

PATH CONDITION
THE COMPOUND CONDITION WHICH MUST BE SATISFIED BY THE INPUT DATA POINT IN
ORDER THAT THE CONTROL PATH BE EXECUTED. IT IS THE CONJUNCTION OF THE
INDIVIDUAL PREDICATE CONDITIONS WHICH ARE GENERATED AT EACH BRANCH POINT
ALONG THE CONTROL PATH. NOT ALL THE CONTROL PATHS THAT EXIST SYNTACTICALLY
WITHIN THE PROGRAM ARE EXECUTABLE. IF INPUT DATA EXIST WHICH SATISY THE PATH
CONDITION, THE CONTROL PATH IS ALSO AN EXECUTION PATH AND CAN BE USED IN
TESTING THE PROGRAM. IF THE PATH CONDITION IS NOT SATISFIED BY ANY INPUT
VALUE, THE PATH IS SAID TO BE INFEASIBLE, AND IS OF NO INTEREST IN TESTING
THE PROGRAM. (DAN 842)

PATH EXPRESSIONS

76

.I' _

A TYPE OF COMMAND PATH CONNECTED TO A FUNCTION WHICH DESCRIBES THE
COOPERATION BETWEEN THE SUBFUNCTIONS OF THIS FUNCTION.

PDL
A PROGRAM DESIGN LANGUAGE (OFTEN CALLED PSEUDOCODE). USED IN THE DESIGN AND
CODING PHASES OF A PROJECT, PDL IS A LANGUAGE THAT CONTAINS A FIXED SET OF
CONTROL STATEMENTS AND A FORMAL OR INFORMAL WAY OF DEFINING AND OPERATING ON
DATA STRUCTURES. PDL CODE MAY OR MAY NOT BE MACHINE READABLE, AND FOR THIS
STUDY IS NOT CONSIDERED AS DOCUMENTATION, BUT AS AN INTEGRAL PART OF THE
FINISHED SOURCE PROGRAM. (SEL)

PEER CODE REVIEW
A PEER CODE REVIEW (PCR) IS A PROCESS BY WHICH A TEAN OF PROGRAMMING
PERSONNEL DO AN IN-DEPTH REVIEW OF A PROGRAM OR PORTION OF A PROGRAM BY
INSPECTION TO DETECT ERRORS AND IMPROVE PROCRAM RELIABILITY.. .TYPICALLY, THE
RESPONSIBLE PROGRAMMER LEADS HIS TECHNICAL PEERS THROUGH THE LISTING OF THE
PROGRAM, EXPLAINING THE FUNCTION OF EACH LINE OF CODE AND ITS ROLE IN THE
OVERALL PROGRAM. THE REVIEW PARTICIPANTS, MEANWHILE, ASK QUESTIONS AND MAKE
COMMENTS RELEVANT TO POTENTIAL ERRORS. TECHNIQUES, STYLE, ETC. THE PRIMARY
REASON FOR PCR'S IS IMPROVING PROGRAM RELIABILITY AND MAINTAINIABILITY.
BECAUSE THE PCR TEAM EXAMINES THE SUBJECT PROGRAM CLOSELY, FEWER ERRORS
SHOULD SLIP THROUGH UNDETECTED. PCR'S HAVE SOME FRINGE BENEFITS. PROGRAMMERS
ARE MOTIVATED TO DO A BETTER JOB, KNOWING THAT THEIR WORK WILL BE CRITIQUED
BY THEIR PEERS. ADDITIONALLY PROGRAMMERS WILL COLLECTIVEL\ IMPROVE THEIR
TECHNIQUES AND STYLE AS THEY SHARE CONCEPTS AT THE REVIEW. BACKUP KNOWLEDGE
IN PROGRAM FUNCTIONING IS ALSO OBTAINED. CODE REVIEW IS ALSO DRUDGERY AND
REQUIRES MOTIVATION OF PARTICIPANTS FOR REWARDING PARTICIPATION. AN OFFSHOOT
OF THIS TECHNIQUE IS INSPECTION, WHICH INVOLVES THIS SAME PROCESS, BUT
WITHOUT DIRECT INTERACTION WITH THE PROGRAMMER...ALSO SEE - CODE
VERIFICATION DESK CHECKING, SOFTWARE SNEAK CIRCUIT ANALYSIS, EGOLESS
PROGRAMMING, FOREIGN DEBUG. (SET)

PERFORMANCE
THE EVALUATION OF NON LOGICAL PROPERTIES (I.E. COMPUTER RUN TIME, RESOURCE
UTILIZATION) OF A SOFTWARE SYSTEM. PERFORMANCE IS NEASURED IN TERMS OF THE
AMOUNT OF RESOURCES REQUIRED BY A SOFTWARE SYSTEM TO PRODUCE A RESULT. (DAN
154) (2) A MEASURE OF THE CAPACITY OF AN INDIVIDUAL OR TEAM TO BUILD
SOFTWARE CAPABILITIES IN SPECIALIZED OR GENERALIZED CONTEXTS. PERFORMANCE
DISTINGUISHES BETWEEN WORK AN5 EFFORT, AS IT INCLUDES PRODUCTIVITY AS ONE
COMPONENT OF ITS MEASURE. HOWEVER, PERFORMANCE ALSO MEASURES QUALITY OF WORK
AS MEASURED BY OTHER CRITERIA AS WELL, AS SET FORTH IN A PRIORITIZED LIST OF
"COMPETING CHARACTERISTICS" EARLY IN DEVELOPMENT. (DAN 1153)

PERFORMANCE EVALUATION
THE DEGREE TO WHICH A SYSTEM MEETS STIPULATED OR GENERALLY ACCEPTED GOALS.
(DAN 434)

PERFORMANCE ORIENTED DATA
INFORMATION REGARDING MANAGEMENT ITEMS. (DAN LD7)

PERFORMANCE REQUIREMENTS
A

SPECIFICATION OF THE TIME AND SPACE REQUIREMENTS WHICH MUST BE MET. (DAN
141) (2) THE SPECIFIED SET OF GOALS WHICH MUST BE ATTAINED BY A SOFTWARE
SYSTEM. (DAN 1201)

77

PERFORMANCE SPECIFICATION
THE OFFICIAL DOCUMENT CONTAINING THE PERFORMANCE REQUIREMENTS FOR A PROGRAM.
(DAN 1201)

PERIPHERAL SIMULATOR
A COMPUTER PROGRAM USED TO TEST CRITICAL COMPUTER/PERIPHERAL INTERFACES THAT
EXIST IN REAL-TIME APPLICATIONS. THESE SIMt'LATORS RANGE FROM FUNCTIONAL IN
WHICH CASE THE PERIPHERAL PROVIDES FEEDBACK TO THE PROGRAM ON THE ASSUMPTION
THAT ALL INTERFACE CONSTRAINTS ARE SATISFIED; TO HIGH-FIDELITY SIMULATIONS
IN WHICH THE INTERFACE CONSTRAINTS MUST BE MODELED, TO A DETAILED LEVEL OF
TIMING AND MESSAGE FORMATTING. (DAN 134)

PETRI NETS
A TOOL FOR THE MODELING AND ANALYSIS OF SYSTEMS WITH CONCURRENT EVOLUTION.
(DAN 264)

PHASE OF PRODUCTION
THAT WORK RELATED TO THE COMPLETION OF A SPECIFIED SET OF MODULES IN
CONFORMANCE WITH REQUIREMENTS AND GOALS. IN TOP-DOWN DEVELOPMENTS, A SET OF
MODULES THAT ARE CURRENTLY DUMMY STUBS BECOMES THE NEXT IMPLEMENTATION
PHASE. (DAN 1153)

PLAN DATA
DATA DESCRIBING THE METHOD OR SCHEME OF ACTION FOR A PROJECT THAT WILL BE
INCLUDED IN THE MANAGEMENT REPORTS. (DAN 137)

PLANNING
A TECHNIQUE THAT INCLUDES THE EVALUATION OF PROJECT REQUIREMENTS IN TERMS
SUCH THAT LOGICAL ASSIGNMENTS CAN BE MADE. ALSO SEE PLANNING AND SCHEDULING.
(DAN LD7)

PLANNING AND SCHEDULING
ALL ACTIVITIES THAT INCLUDE AN EVALUATION OF THE PROJECT'S REQUIREMENTS AND
MAKING ASSIGNMENTS TO CONDUCT THE PROJECT. (DAN LD7)

PL/I
A HIGH LEVEL PROGRAMMING LANGUAGE.

POINTERS
A POINTER IS AN IDENTIFIER THAT INDICATES THE LOCATION OF AN ITEM OF DATA.
(ANSI-X3)

POISSON PROCESS
INDEXING TERM. REFERS TO THE MATHEMATICAL METHODOLOGY WHICH IS USED TO
CONSTRUCT, OR WHICH IS THE FORM ASSUMED BY, A PARTICULAR MODEL.

PORTABILITY
PORTABILITY IS THE PROPERTY OF A SYSTEM WHICH PERMITS IT TO BE MAPPED FROM
ONE ENVIRONMENT TO A DIFFERENT ENVIRONMENT. (2) "PORTABILITY" DESIGNATES THE
FACT THAT FOR MANY DIFFERENT MACHINES AND OPERATING SYSTEMS, COPIES OF THE
PRODUCT CAN BE DELIVERED WITH UNIFORM OPERATING CHARACTERISTICS, FROM THE
USER'S POINT OF VIEW, ANY INPUT WHICH IS VALID ON ONE SUPPORTED SYSTEM IS
VALID ON ANY OTHER SUPPORTED SYSTEM, AND WILL PRODUCE IDENTICAL OUTPUT. (DAN
283) (3) CODE POSSESSES THE CHARACTERISTIC PORTABILITY TO THE EXTENT THAT IT

78

CAN BE OPERATED EASILY AND WELL ON COMPUTER CONFIGURATIONS OTHER THAN ITS
CURRENT ONE...THIS IMPLIES THAT SPECIAL LANGUAGE FEATURES, NOT EASILY
AVAILABLE AT OTHER FACILITIES, ARE NOT USED; OR THAT STANDARD LIBRARY
FUNCTIONS AND SUBROUTINES ARE SELECTED FOR UNIVERAL APPLICABILITY, ETC. (DAN
239) (4) PORTABILITY IS THE PROPERTY OF A SYSTEM WHICH ALLOWS IT TO BE MOVED
TO THE NEW ENVIRONMENT WITH RELATIVE EASE. (DAN 781)

PRECISION
PRECISION IN SOFTWARE IS A MEASURE OF THE DEGREE TO WHICH ERRORS TEND TO
HAVE THE SAME ROOT CAUSE. SOFTWARE PRECISION COULD BE CONSIDERED AS THE
RATIO OF SOURCE BUGS TO THE EFFECTS THEY CAUSE. (DAN 781) (2) A MEASURE OF
THE DEGREE OF DISCRIMINATION WITH WHICH A QUANTITY CAN BE STATED, AS OPPOSED
TO ACCURACY, WHICH STATES THE DEGREE TO WHICH THAT QUANTITY IS FREE FROM
ERROR. (DAN 1153)

PRECOMPILER
A PARTICULAR TYPE OF COMPUTER PROGRAM WHICH HAS THE FOLLOWING
CHARACTERISTICS: 1, IT IS NORMALLY EXECUTED IMMEDIATELY PRECEDING A PROGRAM
COMPILATION. 2. ITS INPUT CONSISTS OF PROGRAMMING STATEMENTS OF WHICH ALL OR
PART ARE UNACCEPTABLE TO THE COMPILER. 3. IT GENERATES, AS OUTPUT, A
COMPUTER PROGRAM IN A SYNTAX ACCEPTABLE TO THE COMPILER. (DAN 142) (2) A
COMPUTER PROGRAM USED TO ADD CAPABILITIES TO A SYSTEM, AS IMPLEMENTED BY A

LANGUAGE PROCESSOR, THAT PROVIDES SPECIAL-PURPOSE FEATURES NOT NORMALLY
INCLUDED AS PART OF ITS INPUT.

PREDICATE
A LOGICAL PROPOSITION OR ASSERTION CONCERNING THE STATE OF A PROGRAM AT A
GIVEN POINT, HAVING EITHER A TRUE OR FALSE VALUE. CONCERNING PROGRAM
CORRECTNESS, ALL SUCH ASSERTIONS MUST BE AXIOMS OR BE PROVED TRUE. (DAN
1153)

PRE-EXECUTION TOOLS
TOOLS THAT OPERATE ON THE LINGUISTIC DESCRIPTION OF A PROGRAM AND DO NOT
REQUIRE ITS EXECUTION. EXAMPLES INCLUDE: SYNTAX CHECKING, INTERACTIVE
COMPILERS, PROGRAM REFERENCE LISTINGS, FLOk CHARTS, AND REFORMATTERS. (DAN
LD7)

PREVENTIVE MAINTENANCE
MAINTENANCE SPECIFICALLY INTENDED TO PREVENT FAULTS FROM OCCURRING.
CORRECTIVE MAINTENANCE AND PREVENTIVE MAINTENANCE ARE BOTH PERFORMED DURING
MAINTENANCE TIME. CONTRAST WITH CORRECTIVE MAINTENANCE. (ANSI-X3)

PREVENTIVE MAINTENANCE TIME
TIME, USUALLY SCHEDULEE, USED TO PERFORM PREVENTIVE MAINTENANCE. (ANSI-X3)

PRIORITY
THE RANK ASSIGNED TO AN ENTITY FOR THE PURPOSE OF DETERMINING THE ORDER IN
WHICH COMPETING ENTITIES MAY USE SYSTEM RESOURCES. (ANSI-X3H1)

PRIVILEGE(D)

A RIGHT OR IMMUNITY GRANTED AS A PECULIAR BENEFIT TO A PERSON OR PROCESS.
USUALLY USED AS A CLASS - A PRIVILEGED PROGRAM CAN USE OR ACCESS SENSITIVE
ITEMS NOT GRANTED TO OTHERS. A PRIVILEGED USER MAY ACCESS OR USE SENSITIVE
ITEMS NOT GRANTED TO OTHER USERS. (At:SI-X3HI)

79

PROBLEM REPORT ANALYSIS
INDEXING TERM. REFERS TO THE PROCESS OF EXTRACTING DATA FPOM SOFTWARE
PROBLEM REPORTS (SPR) AND PROBLEMS RELATED TO THE DIFFICULTY OF COLLECTING
AND ANALYZING THE SPR AS WELL AS RELIABILITY CONCERNS ABOUT THE DATA
EXTRACTED.

PROCEDURAL SPECIFICATIONS
A SPECIFICATION OF A COMPONENT IN SOME ALGORITHMIC MANNER (E.G., USING PDL
OR A FLOW CHART). THE SPECIFICATION SAYS HOW THE PROGRAM IS TO WORK. A
SPECIFICATION OF A SOFTWARE COMPONENT IN SOME ALGORITHMIC MANNER (E.G. USING
PSL OR A FLOW CHART). THE SPECIFICATION SAYS HOW THE PROGRAM IS TO WORK.
CONTRAST WITH FUNCTIONAL SPECIFICATIONS.

PROCEDURE DESIGN LANGUAGE
A LANGUAGE FOR SPECIFYING ALGORITHMS IN ORDINARY ENGLISH OR OTHER LANGUAGE
NOT TO BE COMPILED. KEYWORDS USUALLY APPEAR, SO AS TO FORMAT TEXT AND
CONFORM THE SPECIFICATIONS INTO A STRUCTURED FORM. ALSO CALLED A "PROGRAM
DEFINITION LANGUAGE" (DAN 1153)

PROCEDURE FACILITY
THE CAPABILITY TO USE AND DEFINE PROCEDURES. (ANSI-X3H1)

PROCEDURE(S)
PROCEDURES ARE UNITS OF CODE RUN BY PROCESSES. (DAN 347) (2) (ISO) THE
COURSE OF ACTION TAKEN FOR THE SOLUTION OF A PROBLEM... THE DESCRIPTION OF
THE COURSE OF ACTION TAKEN FOR THE SOLUTION OF A PROBLEM. (ANSI-X3) (3) A
PROCEDURE DEFINITION IS A SEQUENCE OF SOURCE LANGUAGE INSTRUCTIONS. A
PROCEDURE CALL IS A TRANSFER OF CONTROL TO THE PROCEDURE DEFINITION.
PROCEDURES MA, DEFINE AND USE PARAMETERS WHICH MAY HAVE DEFAULT VALUES.
(ANSI-X3HI)

PROCESS
A MODEL REPRESENTATION OF AN INDEPENDENTLY ACTIVE ENTITY IN THE REAL WORLD.
(DAN 250) (2) A PROCESS IS A FINITE STATE MACHINE. (DAN 612) (3) AN
INTEGRATED ACTIVITY WHICH IS DEFINED BY A PARTICULAR SEQUENCE OF EVENTS AND
ENVIRONMENTS. (4) AN ABSTRACT MACHINE WITH AN ONGOING MACHINE CYCLE.
(ABBOTT) (5) A SEQUENCE OF OPERATIONS EXECUTED ONE AT A TIME. TWO PROCESSES
ARE THEN CONCURRENT IF THEIR OPERATIONS CAN OVERLAP OR INTERLEAVE
ARBITRARILY IN TIME. (DAN 1153)

PROCESS CONSTRUCTION
A TECHNIQUE USED TO COMBINE AND LINK INDEPENDENTLY-CODEL MODULES INTO A
RUN-TIME PROCESS. THESE INCLUDE LINKAGES TO THE OPERATING SYSTEM. THE
TECHNIQUE ALLOWS FOR RAPID RECONFIGURATION BASED ON STIMULI FROM THE
RUN-TIME ENVIRONMENT OF A SOFTWARE SYSTEM TO REFLECT CH1ANGES MADE TO A
NUMBER OF ITS MODULES. SPECIFIC COMPUTER PROGRAMS ARE AVAILABLE THAT SERVE
AS AIDS TO IMPLEMENTATION THESE INCLUDE SPECIAL-PURPOSE EDITORS AND CONTROL
PROGRAMS. (DAN 134)

PROCESS DESIGN LANGUAGE - PDL
(1) A FORMAL ALGORITHMIC SPECIFICATION OF A SOFTWARE COMPONENT. (2) AN
EXTENSION OF PASCAL DEVELOPED FOR THE BALLISTIC MISSILE DEFENSE ADVANCED
TECHNOLOGY CENTER OF THE DEPT. OF DEFENSE BY TEXAS INSTRUMENTS, INC.

80

" tI ,,

PROCESS QUEUES
A QUEUE CONTAINING PROCESSES AWAITING CONTROL OF THE MONITOR SO THAT
EXECUTION MAY TAKE PLACE OR A QUEUE CONTAINING PROCESSES AWAITING LOCAL
CONDITION VARIABLES TO BECOME TRUE BEFORE THE PROCESS MAY EXECUTE. (DAN 420)

PROCESSOR
A PHYSICALLY BASED ABSTRACT MACHINE. AN ABSTRACT MACHINE HAVING THE PHYSICAL
CAPACITY TO PERFORM ITS DEFINED OPERATIONS. (ABBOTT)

PRODUCT
EVERYTHING CONTRACTED FOR, PRODUCED FOR, AND DELIVERED TO IHE CUSTOMER.
EXAMPLES INCLUDE: HARDWARE, PROGRAMS, DOCUMENTS, AND TRAINING. (DAN LD7)

PRODUCT CERTIFICATION
A DEMONSTRATION THAT THE ACTUAL SYSTEM PERFORMANCE CORRESPONDS TO THE
EXPECTED SYSTEM PERFORMANCE. (DAN LD7)

PRODUCT SAFETY
INDEXING TERM. REFERS TO METHODS TO PREVENT, AND CONCERN ABOUT, MALFUNCTIONS
IN EQUIPMENT DUE TO DEFICIENCIES IN SOFTWARE WHICH COULD CAUSE INJURY OR
DEATH TO HUMAN BEINGS.

PRODUCT SAFETY EVALUATION
INDEXING TERM. REFERS TO A QUANTITATIVE ASSESSMENT OR MEANS OF MAKING A
QUANTITATIVE ASSESSMENT OF SOFTWARE PRODUCT SAFETY.

PRODUCT WARRANTY
A PROCESS THAT PRECEDES CONFIGURATION CONTROL AND QUALITY ASSURANCE
ACTIVITIES. THIS PROCESS IS A DEVICE FOR CUSTOMER FEEDBACK AFTER SOFTWARE
SYSTEM HAS BEEN DELIVERED. IT PROVIDES: 1) A MEANS BY WHICH THE CUSTOMER
REPORTS SUSPECTED PROBLEMS; 2) A MEANS FOR TECHNICAL AND CONTRACTUAL
EVALUATION OF THESE PROBLEMS; 3) ARBITRATION AND APPEAL PROCEDURES; AND 4) A
MEANS TO RE-CERTIFY THE CORRECTED SYSTEM. ALSO SEE PRODUCT WARRANTY AND
MAINTENANCE, AND PRODUCT WARRANTY PROCEDURES. (DAN LD7)

PRODUCT WARRANTY AND MAINTENANCE
A DEVICE, INDICATING THE PROCEDURES TO BE FOLLOWED DURING THE WARRANTY
PERIOD OF A SYSTEM, FOR CUSTOMER FEEDBACK AFTER THE DELIVERY OF A SYSTEM.
(DAN LD7)

PRODUCT WARRANTY PROCEDURES
A CUSTOMER FEEDBACK DEVICE THAT PRECEDES THE DELIVERY OF A PRODUCT, AND
INDICATES THE PROCEDURES TO BE FOLLOWED DURING THE WARRANTY PERIOD OF A
SYSTEM. (DAN LD7)

PRODUCTION
THAT PORTION OF A SOFTWARE IMPLEMENTATION THAT HAS TO DO WITH THE GENERATION
OF CODE AND DOCUMENTATION AND THE CHECKOUT FOR CORRECTNESS PY PRODUCTION
PERSONNEL. PRODUCTION PROGRAMMING IS CHARACTERIZED BY THL APPLICAIION OF
TRADEOFFS, KNOWN ALGORITHMS, AND STATE-OF-THE-ART SOLUTION NLTHOUS TOWARD
SOFTWARE GENERATION, AS OPPOSED TO PROGRAMMING PLRFORMED TO EXTEND THE
CURRENT STATE OF THE ART. (DAN 1153)

PRODUCTION LIBRARIES

81

A TECHNIQUE USED TO PROVIDE CONSTANTLY UP-TO-DATE REPRESENTATIONS OF THE
COMPUTER PROGRAMS AND TEST DATA IN BOTH COMPUTER ANU HUMAN READABLE FOPmS.
THE CURRENT STATUS AND PAST HISTORY OF ALL CODE GENERATED IS ALSO
MAINTAINED. SPECIFIC LIBRARY PROGRAMS ARE AVAILABLE TO SERVE AS AIDS TO
IMPLEMENTATION. (DAN 134) SEE ALSO DEVELOPMENT SUPPORT LIBRARIAN AND PROGRAM
LIBRARY SYSTEMS.

PRODUCTION RUN
THE OPERATION OF A SOFTWARE SYSTEM UNDER REAL OPERATING CONDITIONS AND THE
PRODUCTION nF USEFUL PRODUCTS FOR THE CUSTOMER. THIS IS CONTRASTED WITH A
TEST RUN, WHICH IS THE OPERATION OF A SOFTWARE SYSTEM TO TEST ITS
PERFORMANCE. (DAN LD7)

PRODUCTIVITY
TRADITIONALLY, THE GENERALLY ACCEPTED DESCRIPTION (IF NOT DEFINITION) OF
PROGRAMMING PRODUCTIVITY HAS BEEN "LINES-OF-CODE/MAN-MONTH" (I.E. QUANTITY
OF CODE PRODUCED). (2) INSTRUCTIONS/STAFF-YEAR FOR EITHER TOTAL RESOURCES
EXPENDED IN THE SOFTWARE DEVELOPMENT CYCLE OR REAL-TIME SOFTWARE
DEVELOPMENT. (DAN459) (3) PRODUCTIVITY IS THE RATE OF PRODUCTION OF COMPUTER
SOFTWARE. THIS RATE IS NORMALLY MEASURED IN THE QUANTITY OF CODE AND
DOCUMENTATION PRODUCED. THE DEFINITION OF PRODUCTIVITY MAY CONTAIN AT LEAST
THREE ADDITIONAL ELEMENTS: A) A QUALITATIVE ELEMENT CONCERNED WITH THE
CORRECTNESS AND EFFICIENCY OF THE SOFTWARE, B) A QUALITATIVE ELEMENT
CONCERNED WITH THE DIFFICULTY OF THE APPLICATIONS BEING IMPLEMENTED
INCLUDING SIZE AND COMPLEXITY, C) AN ELEMENT CONCERNED WITH THE COST OF
PRODUCING THE SOFTWARE. (SET)

PRODUCTIVITY FACTORS
THOSE FACTORS WHICH INFLUENCE THE PRODUCTIVITY RATE SUCH AS, NATURE OF THE
SYSTEM, STATE OF THE SOFTWARE DEVELOPMENT PROCESS, QUALITY OF SYSTEMS
ENGINEERING, DESIGN, SIZE OF THE PROJECT (INVERSE EFFECT), ETC. (DAN 459)

PROFILE
A COMPENDIUM OF INFORMATION WHICH CONTRIBUTES TO THE DEFINITION OF AN
ENVIRONMENT. (ANSI-X3HI)

PROGRAM
A PROGRAM IS A COLLECTION OF OPERATIONS OR ABSTRACT ENTITY DESIGNED TO CAUSE
THE COMPUTER EQUIPMENT TO EXECUTE AN OPERATION OR OPERATIONS... COMPUTER
PROGRAMS INCLUDE OPERATING SYSTEMS, ASSEMBLERS, COMPILERS, INTERPRETERS,
DATA MANAGEMENT SYSTEMS, UTILITY PROGRAMS, AS WELL AS APPLICATIONS PROGRAMS
SUCH AS PAYROLL, INVENTORY CONTROL, OPERATIONAL FLIGHT, SATELLITE
NAVIGATION, AUTOMATIC TEST, CREW SIMULATOR, AND ENGINEERING ANALYSIS
PROGRAMS. COMPUTER PROGRAMS MAY BE EITHER MACHINE-DEPENDENT OR
MACHINE-INDEPENDENT, AND MAY BE GENERAL PURPOSE OR BE DESIGNED TO SATISFY
THE REQUIREMENTS OF A SPECIALIZED PROCESS Or A PARTICULAR USER. (SET) (2)
THE LOWEST LEVEL OF MODULE THAT CAN BE ASSEMBLED OR COMPILED AND CAN BE
EXECUTED AS A SINGLE ENTITY. (DAN 137) (3) AN ALGORITHM ALONG WITH A
PARTICULAR COLLECTION OF DATA OBJECTS TO WHICH THE ALGORITHM IS APPLIED. A
PROGRAM IS TAKEN AS INDEPENDENT OF THE PROGRAMMING LANGUAGE IN WHICH IT IS
EXPRESSED. (ABBOTT)

PROGRAM ANALYSIS
THE PROCESS OF GATHERING INFORMATION ABOUT A PROGRAM (E.G., NUMBER OF PATHS,

82

, I ,,,

FREQUENCIES WITH WHICH EACH PATH IS RUN, RUNNING TIME OF EACH PATH,
PROBABILITY OF ERROR ALONG EACH PATH, NUMBER OF BRANCHES) AND USING ThAT
INFORMATION TO EVALUATE COST FUNCTIONS, TO MEASURE RELIABILITY AND
PERFORMANCE, AND TO ASSIST IN TESTING AND VERIFICATION PROCEDURES.

PROGRAM ANNOTATION
THE PROCESS OF INVARIANT ASSERTIONS. (DAN 263)

PROGRAM ARCHITECTURE
THE STRUCTURE AND ORGANIZATION OF A COMPUTER PROGRAM AS REFLECTED BY THE
RELATIONSHIPS BETWEEN ITS FUNCTIONS AND THE TRANSFER OF CONTROL AMONG THE
MODULES PERFORMING THESE FUNCTIONS. (NASA)

PROGRAM COMPLEXITY
PROGRAM COMPLEXITY IS AN INDICATOR OF PROGRAM READABILITY. IT IS A FUNCTION
OF THE NUMBER OF EXECUTION PATHS IN THE PROGRAM AND THE DIFFICULTY OF
DETERMINING THE PATH FOR AN ARBITRARY SET OF INPUT DATA. (DAN 262)
ADDITIONAL LIST: DAN 314 P142

PROGRAM CONTRACTION
THE PROCESS OF REMOVING UNWANTED AND/OR UNNEEDED CAPABILITY FROM A PROGRAM.
(DAN 275)

PROGRAM CORRECTNESS
A CORRECT PROGRAM IS ONE THAT HAS BEEN PROVED TO MEET ITS SPECIFICATIONS.
(DAN 237)

PROGRAM DESCRIPTION SPECIFICATIONS
THESE ARE INFORMATIONAL DOCUMENTS PRODUCED FOR THE CUSTCMER, USUALLY
ACCORDING TO HIS REQUIREMENTS. (DAN LD7)

PROGRAM DESIGN LANGUAGE
(PDL) A DESIGN TOOL USED TO FACILITATE THE TRANSLATION OF FUNCTIONAL
SPECIFICATIONS INTO COMPUTER INSTRUCTIONS. (DAN 14) (2) INTENDED TO BE
COMPARABLE TO THE BLUEPRINT IN HARDWARE, PROGRAMMING DESIGN LANGUAGES STRIVE
TO COMMUNICATE THE CONCEPT OF THE SOFTWARE DESIGN IN ALL NECESSARY DETAIL,
USING A FORMAL OR STRUCTURED VERSION OF ENGLISH, SOMETIMES CALLED PIDGIN
ENGLISH OR PSEUDO-CODE. (DAN 227)

PROGRAM DESIGN METHODOLOGIES
INDEXING TERM. REFERS TO A DOCUMENT DESCRIBING OR ADVOCATINU A PARTICULAR
DESIGN METHODOLOGY, TO A COMPARISON OF TWO OR MORE DESIGN METHODOLOGIES, OR
TO A RELATION OF EXPERIENCES RESULTING FROM THE USE OF A PARTICULAR DESIGN
METHODOLOGY.

PROGRAM DEVELOPMENT TOOLS
TOOLS THAT TAKE THE COMPUTER-STORED SOURCE PROGRAM INTO AN OBJECT CODE
MODULE AND THEN A LOAD MODULE, AND SUBSEQUENTLY E'LCUTE THE CODE IN A
SPECIFIC TEST ENVIRONMENT. (DAN L07)

PROGRAM EVALUATION
THE PROCESS OF STUDYING A PROGRAM TO DETERMINE HOW WELL IT FULFILLS ITS

DESIGNED PURPOSE. (DAN 1201)

83

PROGRAM EXTENSION
THE PROCESS OF ADDING NEEDED OR DESIRED CAPABILITY TO A PROGRAM. (DAN 275)

PROGRAM FAMILIES
WE CONSIDER A SET OF PROGRAMS TO BE A PROGRAM FAMILY IF THEY HAVE SO MUCH IN
COMMON THAT IT PAYS TO STUDY THEIR COMMON ASPECTS BEFORE LOOKING AT THE
ASPECTS THAT DIFFERENTIATE THEM. (DAN 275)

PROGRAM FLOW ANALYZER
A COMPUTER PROGRAM THAT PROVIDES STATISTICS ON SOURCE CODE STATEMENT USAGE
AND TIMING DATA ON PROGRAM ELEMENTS DURING TEST CASE EXECUTIONS. (LAN 134)

PROGRAM IMPLEMENTATION
ALL ACTIVITIES ASSOCIATED WI1H SOFTWARE MODULE DESIGN, CODING, TESTING AND
THE INTEGRATION OF SOFTWARE MODULES INTO A FUNCTIONAL SYSTEM OPERATING ON
THE TOTAL, FINAL HARDWARE CONFIGURATION. (DAN LD7)

PROGRAM INSTRUMENTATION
A QUANTITATIVE ASSESSMENT OF HOW THOROUGHLY A PROGRAM IS EXERCISED BY A SET
OF TEST CASES. (DAN LD7)

PROGRAM INSTRUMENTATION TOOLS
TOOLS THAT PROVIDE A MECHANISM FOR MONITORING AND RECORDING INFORMATIUN
ABOUT AN OBJECT PROGRAM AS IT OPERATES. EXAMPLES INCLUDE TRACES AND SNAPSHOT
DUMPS. (DAN LD7)

PROGRAM LIBRARY
A CONTROLLED SET OF ALL DOCUMENTATION, BASELINE PROGRAMS, NEW PROGRAMMED
ELEMENTS, SUPPORT SOFTWARE AND TOOLS AVAILABLE FOR DEVELOPMENT AND
CONFIGURATION MANAGEMENT OF A PROGRAM. (DAN 1201)

PROGRAM LIBRARY SYSTEM
AN AUTOMATED PROGRAM LIBRARY OR SUPPORT SYSTER WHICH STORES ALL OF THE
PROJECT'S WORK PRODUCTS (E.G., SOURCL CODE, OBJECT CODE, TEST CASES,
DOCUMENTATION) IN AN INTEGRATED DATA BASE. THE SYSTEM MAY OPERATE IN FATCH
OR INTERACTIVE MODE, OR BOTH. IT USUALLY WILL PROVIDE FOR MULTIPLE VERSIONS
OF A FILE, WITH ONE VERSION OF EACH FILE TAGGED AS THE PRODUCTION VERSION,
AND WITH SECURITY MECHANISMS TO PREVENT UNAUTHORIZED CHANGES TO THE
PRODUCTION VERSION. FILES ARE USUALLY PROVIDED FOR SOURCE CODE, OJECT CODE,
JCL, AND PROGRAM DATA. THE PROGRAM LIBRARY SYSTEM CAN ALSO ENCOMPASS REPORT
GENERATORS TO ANALYZE DATA FROM THE INTEGRATED DATA BASE TO PROVIDE FOR
PROJECT VISIBILITY AND FOR AUDITING PURPOSES. (DAN 286)

PROGRAM LISTING
THE SEQUENCE OF INSTRUCTIONS COMPRISING A COMPUTER PROGRAM, USUALLY IN THE
FORM OF A PRINTOUT. (NASA)

PROGRAM MANAGEMENT DIRECTIVE
THE OFFICIAL HQ USAF MANAGEMENT DIRECTIVE USED TO PROVIDE DIRECTION TO THE
IMPLEMENTING AND PARTICIPATING COMMANDS ANO SATISFY DOCUMENTATION
REQUIREMENTS IT WILL BE USED DURING THE ENTIRE ACQUISTION CYCLE TO STATE
REQUIREMENTS AND REQUEST STUDIES AS WELL AS INITIATE, APPROVE, CHARGE,
TRANSITION, MODIFY, OR TERMINATE PROGRAMS. THE CONTENT OF THE PMD, INCLUDING
THE REQUIRED HQ USAF REVIEW AND APPROVAL ACTIONS, IS TAILORED TO THE NEEDS

84

tI

OF EAoH INDIVIDUAL PROGRAM. (AIR800-2)

PROGRAM MANAGEMENT PLAN
THE DOCUMENT DEVELOPED AND ISSUED BY THE PROGRAIM IANAGLP THAT S0 ' ,2
INTEGRATED TIME-PHASED TASKS AND RESOURCES REQUIkEI TO C(JMPLLETE THE TAS
SPECIFIED IN THE PROGRAM MANAGEMENT DIRECTIVE (PMD). (AFR O()-2)

PROGRAM MANAGER
THE GENERIC TERM USED TO DENOTL A SINGLE AIR FORCL MANAGER (SYSTL.. PRGPir.
DIRECTOR, PROGRAM/PROJLCT MANAGER, OR SYSTEM/ITEM MANIAGER) PLPILc t7,Y
SPECIFIC PHASE OF THE ACQUISITION LIFE CYCLE. (AFRO0C-2)

PROGRAM MODIFICATION
INDEXING TERM. REFERS TO CHANGES MADE TO PROGRAMS DURING THE MAINTENANCL
PHASE OF THE SOFTWARE LIFE CYCLE.

PROGRAM MODULE
A PROGRAM MODULE IS A DISCRETE, IDENTIFIABLE SET OF INSIRUCTIONS USUALY
HANDLED AS A UNIT BY AN ASSEMBLER, A COMPILER, A LINKAGE EDITOR, A LOADIN.
ROUTINE, OR OTHER TYPE OF ROUTINE OR "SUBROUTINE". (SET) SEE ALSO: MODULE,
MODULARITY, MODULAR DECOMPOSITION, ROUTINE, SUBROUTINE.

PROGRAM MUTATION
A TECHNIQUE FOR CREATING HIGH QUALITY TEST DATA. THE APPROACH IS BASED ON
THE COMPETENT PROGRAMMER ASSUMPTION; THAI AFTER THE PROGRAMMER HAS COMPLETED
HIS JOE, THE PROGRAM IS EITHER CORREct OR "ALMOST" CORRECT IN THAT IT
DIFFERS FROM A CORRECT PROGRAM IN ONLY SIMPLE WAYS, AND IS THUS A MUTANT uF
A CORRECT PROGRAM. THE CENTRAL IDEA OF PROGRAM MUTATION IS THE CONSTRUCTI(Uo
OF A SET OF MUTANTS OF THE TARGET PROGRAM. A MUTANT IS A COPY OF THE TARGET
PROGRAM WHICH DIFFERS ONLY BY A SINGLE "M-UTATION'. A MUTATION IS A
TRANSFCRMATION OF A PROGRAM STATEMENT IN A WAY WHICH STIMULATES TYPICAL
PROGRAM ERRORS. SOME MUTANTS MAY TURN OUT TO BE EQUIVALENT, FUNCTIOALLY, TO
THE TARGET PROGRAM. THE REMAINDER SHOULD BE DISTINGUISHED FROM THE TARGET
PROGRAM BY SUFFICIENTLY POWERFUL TEST DATA. TEST DATA WHICH IS ABLE TO
DISTINGUISH ALL NON-EUIVALENT MUTANTS OF A TARGET PROGRAM MUST THOROUGHLY,.
EXERCISE THE PROGRAM AND, HENCE, PROVIDE STRONG EVIDENCE OF THE PROGRAM'S
CORRECTNESS. (DAN 841,843)

PROGRAM OFFICE
THE FIELD OFFICE ORGANIZED BY THE PROGRAM MANAGER TO ASSIST HIlM IN
ACCOMPLISHING THE PROGRAM. TASKS.

PROGRAM PRODUCTION TOOL
AN ESTABLISHED PROCEDURE OR COMPUTLk PROGRAM THAT PROVIDES ASSISTANCE IN THE
DEVELOPMENT, IMPLEMENTATION, AND TESTING OF A SOFTWARE SYSTEM. (LAN LD7)

PROGRAM PROTECTION
THE MECHANISMS IMPLEMENTED IN A SYSTEM WHICH PREVENT UNAUTHORIZLD ACCESS To
THOSE PARTS OF A SYSTEM (E.G., FILES, DATA STRUCTURES) BELONGING TO A
PARTICULAR USER. ALSO, THE TERM CAN APP! Y TO THE DLGRLE OF PROT[CTIO;N
PROVIDED BY A SYSTEM FOR f PARTICULAR USER OR CLASS OF USERS.

PROGRAM REFERENCES

SPECIAL LISTINGS, PRODUCED BY MANY COMPILERS, THA- INCR[ASL THE USER'S

1 05

UNDERSTANDING OF THE NATURE OF THE PROGPAM PRODUCED. EXAMPLES INCLUDE:
DICTIONARY LISTINGS, CORE-STORAGE MAPS, AND CROSS-REFERENCE LISTINGS. (DAN
LD7)

PROGRAM SEGMENT
THE SMALLEST CODED UNIT OF A PROGRAM WHICH CAN BE LOADED AS ONE LOGICAL
ENTITY. (DAN 1201) (2) A COMBINATION OF PROGRAM STEPS AND CALLS TO
LOWER-LEVEL PROGRAM SEGMENTS. (DAN LD7) (3) A COLLECTED SEQUENCE 0 PROGRAM
STEPS.

PROGRAM SEQUENCER
A COMPUTER PROGRAM USED TO FORCE EXECUTION OF ALL POSSIBLE PROGRAM
INSTRUCTIONS AND BRANCHES TO DETERMINE PROGRAM FLOW, EXECUTE SELDOM-USED
BRANCHES, AND TO VERIFY PROPER PROGRAM OPERATIONS. THE AID IS OFTEN USED
WITH AN INSTRUCTION SIMULATOR. (DAN 134)

PROGRAM STUB
A TEMPORARY (I.E. DUMMY) UNIT OF SOURCE CODE WHICH IS PART OF AN INCOMPLETE
STRUCTURED PROGRAM AND WILL BE REPLACEL BY THE ACTUAL UNIT OF CODE WHEN IT
IS COMPLETED. (DAN 137) (2) DUMMY PROGRAM SEGMENTS CONTAINING ENOUGH CODE TO
ESTABLISH LINKAGE WITH A HIGHER-LEVEL SEGMENT. (DAN LD7)

PROGRAM STUB SIMULATORS
GENERALIZED SUBROUTINES USED IN PROGRAM STUBS THAT SUPPLY THE CODE REQUIRED
TO ESTABLISH THE DESIRED LINKAGE WITH THE HIGHER-LEVEL PROGRAM SEGMENTS.
THEY INCLUDE GENERALIZED TABLE LOOKUP ROUTINES. RANDOM NUMBER GENERATORS, CR
ROUTINES THAT ONLY RECORD THE INVOCATION OF A PROGRAM, SEGMENT. (DAN LD7)

PROGRAM SUPPORT LIBRARY
A SOFTWARE SYSTEM WHICH PROVIDES TOOLS TO ORGANIZE, IMPLEMENT AND CONTROL
SOFTWARE DEVELOPMENT. SEE ALSO: SOFTWARE DEVELOPMENT LIBRARY, PROGRAMMING
SUPPORT LIBRARY

PROGRAM SYNTHESIS
USE OF PROGRAM VERIFICATION TECHNIQUES AND PRINCIPLES IN THE CUNSTRUCTION OF
PROGRAMS. (DAN 265)

PROGRAM TESTING
SEE TESTING

PROGRAM TRANSFORMATIONS
TO REPLACE ONE SEGMENT OF A PROGRAM DESCRIPTION B ANOTHER, EQUIVALENT
DESCRIPTION. (DAN 265) ALSO DAN 250.

PROGRAM UNDERSTANDING
INDEXING TERM. INDICATES THE DEGREE TO WHICH A PROGRAM IS COMPREHENSIBLE AND
CAN BE UNDERSTOOD IN FUNCTION AND SCOPE (OTHER THAN BY rHE PROGRAMMER WHO
WROTE IT), AND ALSO INDICATES THAT THE DOCUMENT DISCUSSES FACTOGS WHICH
CONTRIBUTE TO PROGRAM UNDERSTANDING.

PROGRAM VALIDATION
ALL TECHNIQUES USED TO ENSURE CORRECT PROGRAMS INCLUDING SYSTEM AND
SUBSYSTEM TESTS AND SYSTEM INTEGRATION TESTING. (DAN LD7)

86

AD A12? 689 A BIBLIOGRAPHY OF SOFIWARE
ENG

r
INEERING TERMS(U) DATA

AND ANALYSIS CENTER FOR SOFTWARE
GRIFFISS AFB NY

S A GLOSS-SOLER OCT 79 DACS-GLOS-l F306D2-78-C-0255

UNCLASSIFIED
FIG 5/2 NL

*uuuUUUUEEEI
*E UUUUIIIU

_
U _

V 9-:1" 1f

l32

PROGRAM VALIDATION TOOLS
TUOLS THAT ARt USIb It TIHE PPLEXL(UTIUh AtC RUh Tl1t FPhA$SS (if PROGRA1P.
IMPLLMLNTAYION AND PR"A ORD VALILATION. (lAN LL;7)

PROGRAMMER
A PRUGRAIMME IS A PERSON kftI PRLVULCLb LL*PUTtL PRLA;e/.S. , SjhjUk LEVEL
i'ROGRA/PI R IS KVIR PJ.LL? LAPtBLE I. PLFtkuIolh., ALL Sf41ARL OLVELUPPEhT
ACTIVIIES INCLUDIN DESIOt, CODL, T151, AK) LAXURL11TATIU,. THL A(T!VITIES
Of A MORE JUNIOR LEVEL PRLA&RAMKR KAY BE LIMITLE T, (UU, G, TEST LAS[
PREPARATIUN. AND/UR ASS10TI?% IN THE PK(IflCATIOb f WSNL. PkO(AMS ANC
DOCUMEkTATIOh. ALSO Sit - PRUGRAII. (SET)

PROGRAMMER PRODUCTIVITY
THE NUJMBLR Of VALIL S ULRCL SIATI'ELhTS (C0LU ftP BLSY HOUR4. i HER VALlu
SOURCE STATIMENTS AR T UPSL So URC STAtLPEITs (A A w't*ABLLE C(OPUT[R SOUR.L
PROGRAP. (LAN 314)

PROCRAMME(RS APPRENTICE
A COMPUTER SYSTEM WHICP kht# GIVEN KhLh)tLD(Uf BASIC PR(IAWG 7ULJhIQULs
AND THiE ABILITY To ASSIPILATE APPLICATION U0OAIN C(.UhlPTS CAN UtLIRSTAMU A
USER'S PROC AR AND COUPERATE klhTi THE ust :h I t mIGN, 'LLpa NAT I(oi,
AND 0AINTLNANE UF TiE PARAP. AN APPREIIct 141b NOT BE CAPALLI Of
PROGRAMmING BY ITsLLI BuT CM AID ti LItP PR R l.k BY CP'ECING HIS ,okC:
IN VARIOUS wAYS. (DAN 720)

PROGRAMMI NG
PROGRA1MNG Is TE ALTIVIY LI CESIGhING, RITYING, Ali TESTING IN A Co', UIlR
LANGUAGE TO ACCOMPLISH A GIVEL, TASX. (SLY) (2) $ROu(LKTI(W Of THE LI(WHICH
WILL CONTRO4L THE SYSTEM Ahr PERFORM ALL REQUIRM(LOGIC Ahb CLpPUIA ION. (CAt
113) '3) CODING AND OCUREtTING A ULSIRL SOFT APL IUFNCTION TO CU1PUNICATI
IT Tu A PARTICULAR COMPLTER AND TRAINED PERSLA&EL, RLSPICTIVtLY. (1JSA)

PROCRAMING AIDS
INDEXING TERM. REFLRS TO TOOLS, TICHNIQILS, AND PPOC(LKLP.S 4HICH ARE Of USL
IN WRITING PROGRAMS.

PROGRAMING LAINGIAG
A FORPAL NOTATION IN klHICH PROGRAMS E IP LSSED. (AtBOTT) A fORMA L
LANGUAGE COMPOSED OF A REPERTOIRE Of INSTRUCTIONS AND STATEAM TS, HAVING
FORMAL SYNTAX AlsD LEXICAL RULES, USABLE INf CL*POSING COMPUTER PHOGRAs WHICH
REQUIRE TRANSLATION TO BE MACHINE EXECUTAU.E. (NASA)

PROGRAMSING LANGUAGE COMPLEXITY
PROGRAMMING LANGUAGE COPLEXITY IS AN INDICATOR OF THE READABILITY OR
UNDERSTANDABILITY OF A PROGRAW!ING LAGUAGE. (DAN 297) ALSO RELATtl To
PROGRAM LENCTH.

PROGRAIING SPECIFICATION
THAT PORTION OF THE SOITtUARE SPECIFICATION iDOCUM[NT WHICH SETS FORTH
DESCRIPTIONS OF ALGORITHMS, DATA STRUCTURES, THE /KODULAR DEFINITION, ETC.,
IN SUFFICIENT DETAIL THAT TI PROGRAM CAN BE COOEC %ITHOUT FUNCTIONAL OR
ALGORITHMIC AMBIGUITY. (DAN 1153)

PROGRAMING STANDARDS

87

SEE STANVAPUS, SUfIWARE LhLEhLLRING STANDARDS

PROGRAMMING SUPPORT LIBRARY
(PSL) A REPOSITORY FUR DATA NECESSARY FOR THff (JPLPLV V[VELOPME'NT OF
COMPUTER PROGRAMS USING STkUCTURLD PR'ObRAMMING TICHILOGY. T1lL DATA
REPUS:TURY IS IN TW0 FORMS: DATA IS STORED Ih MACHINE RLALALLE FOR'
ACCESSIBLE BY THE CL(*tPTLR AND THE IDENTICAL DATA IS STUPID It. H!AR COPY
FORM IN PRuWEET NOTEBU)U.S. A PSI ALSO INCLUDES THE NECLSSARY .UiM,'Ulik ANt
0FF!CE PROCEDURES FOR NANIPLLATING THIS LATA. (CAlt 140) SEE ALSO: '(CFTWARL
DEV.LUOPEhT LIBRARY, I'OCIAM SUPPORT LIBRARY

PROGRAMING TECHNIQUES
IND011 TIkF'. METIHODS OR MEANS USEV TO DEVILLP, LISIN, Uk WRITL A PROGRAI,.

PROJECT
A ULNERAL TLkR uSE6 TC DLSCRIlE A SL1TAkjI DEVLLGPMENT LFfORT. (OAN 137) (2)
ALL PPCQLSSE NECESSARY TU PRU.UCL A PRPOLct. (LAN LEV)

PROJECT CONSTRUCT DATA
INFORMATIOK ON DISIGN AND 114PLI.MhTATIh DETAILS. (D.NLUI)

PROJECT DATA BASE
A PRO-/ECT-SPLCII 4(CATAL(I LLCUTAIldIh F A;,LVltiT ATA AhN iP('RGP LATA
SUPPLIED As, USE BY VAP]OLS tC(.LIT!ES. EYAPPLES IN(tLLi: 111 CC;tTLTN'.
NAMES, ANW LINKAGE S I ALL TIL WIALL1' Ih A t4,1TCLLAP SYSTLI.'. 7P (. '
LATA Plv,!AtAIlsL to Tt'E TASIS ADL MILEST0ES U1 A S11t.1 i('(N.' Iltr'k Ll.')

PROJECT MANAGEMENT SURVEY
INIDICtTES THAT A SURVEY kAS CGRE Ch SOF TWARE [hl IiEE'i7G UPPJECT VANA (it f %T
(INDWiG TEPP' ONLY)

PROJECT NOTEBOOK
DESI(EFFORTS INEITALLY PROULL P uCli hRITTLt YATL/,L - ,CRANUA,
EXPLANATIONS, REPORTS. Tit[PRLJECT hURIB(OI. IS A TOOL (V AV US ' TO CAPTURL
AND ORGANIZE THESE MATERIALS, SO AS TO BE SURE THESE MATEPIALS PIACF ALL WHO
NEED TO USE THEM, AND AFE AVAILABLE FOR USE LATL. (DA 2'7-C(1,-If I,)

PROJECT PLAN
INTERNALLY CONTROLLED FORMAL DOCUPENT REUUIRLD ON ALL PRLCTS 4tICH DLFINLES
TO COMPANY PANAGEkE NT THE CONTRACT FORM, Thl, STATE ,11T f WORK., TH
MILLST.NES SCHELLE, THE niTHOD OF COMPLETING ALL LELIVERED ITEMS,
EVALUATION OF RISK, AND CUSTOMER RELATIONS. (DAN 12(,1)

PROMPT
TO INFCRM A USER THAT A SYSTEP. OR PROCESS IS READY FOP THE NEXT COMMlAND,
DATA ELEMENT, OR OTHER INPUT. BY OFFERING VEREAL OP PICTORIAL SUGGESTIONS,
TC ASSIST A USER TO COPPLETE OR CORRECT A COMMAND OR OTHER EXPECTED MESSAGE.
(ANSI-X3HI)

PROOF OF CORRECTNESS
A PROOF OF CORRECTNESS IS A STATEMLNT OF ASSERTIONS ABOUT A PROGRAM THAT IS
VERIFIED BY ANALYTIC 1,.THODS... AN ALTERNATIVE TO EXECUTING TESTS ON
SOFTWARE TO DEMONSTRATE ITS CORRECTNESS IS THE 1.ET1OD OF ANA.LYTIC PROOFS.
THE VERIFICATION PROCESS CONSISTS OF MAKING ASS[RTIONS DESCRIBING ThE STATE

8E

OF A PROGRAM, INITIALLY, AT INTERMEDIATE POINTS IN THE PROGRAM FLUW AND AT
TERMINATION; AND THEN PROVING THAT EACH ASSERTION IS IMPLILD BY THE INITIAL
CR PRIOR ONE AND BY THE TRANSFORMATIONS PERFORMED BY THE PROGRAMV BETWEEN
EACH TWO CONSECUTIVE ASSERTIONS. AN ASSERTION CONSISTS OF A UEFINITION Of
THE RELATIONSHIPS AMONG THE VARIABLES AT THAT POINT IN THE PROGRAR WHEPE THE
ASSERTION IS MADE. THE PROOFS EMPLOY STANDARD TECHNIQUES FOR PROVING
THEOREMS IN THE FIRST-ORDER PREDICATE CALCULUS. PROOF Of THE CORkECTNLSS OF
A PROGRAM USING THIS APPROACH LESSENS THE NEL FOR EXECUTING TEST CASES,
SINCE ALL POSSIBILITIES ARE COVERED BY THL PROOFS. ALSO SEE - COMPUTER
PROGRAIe VERIFICATION. (SET) (2) AN AGREEMENT, IN TOTAL, OF A PROGRAM, WITH
!TS ASSERTIONS; ALSO, THE USUAL ADDITIONAL ASSUMPTION IS THAT PROGRAM
TERMINATION IS, LIEWISE, PROVED.

PROOF TECHNIQUE
A METHOD FOR FORMALLY bEONSTRATING THAT A PIELE OF SOFTWARL PCRFORfrS
ACCORCING TO ITS SPECIFICATIONS. PROOF TECHNIQUES USUALLY USL SOME FORM OF
MATHEMATICAL NOTATION TO DESCRIBE THE RESULT OF LXECUTING A PROGRAv,. (SEL)
SEE ALSO CORRECTNESS PROOFS.

PROPER PROGRAM
A PROGRAM OR PROGRAM SLGVENT, SUCH AS A SUBROUTINE, SUBPROGRAM, OR FUNCTOI:,
WHICH HAS BUT ONE POINT OF ENTRY (IN CONTROL) ANE BUT ONE MODE OF EXIT
(ALTHOUGH, IF A SUBROUTINE, IT MAY EE CALLED FROM, AND RETURN TO, MANY
POINTS IN A PROGRAM). (DAN 1153)

PROTECTION
AN ARRANGEMENT FOR RESTRICTING ACCESS TO OR USE OF A SYSTEM OR PART OF A
SYSTEM. (ANSI-X3)

PROTECT ION MEASUREMENT
A MEASURE OF THE DEGREE OF PROTECTION PROVIDEL FOR A PROGRAM OR SYSTEM.

PROTOCOL
GIVEN A SET OF ENTITIES, A PREDEFINED SLT (i RULES THAT CONTROL THL
COMMUNICATION AMONG THE ENTITIES IS CALLED A COMMUNICATION PROTOCOL OF THL
SET. THE ENTITIES CAN BE PROCESSES OR APPLICATION PROGRAMS IN THE SAME
COMPUTER OR IN DIFFERENT COMPUTERS WITHIN A COMPUTER NETWORK. (DAN 451) (2)
A PROTOCOL IS A SET OF RULES (FORMULAS OR STANDARDS) LSTABLISHED TO REGULATE
THE INTERACTIONS BETWEEN THE ATTACHED ENTRIES IN A COMPUTER NETWORK AND Tu
ENSURE THAT THEY PROCEED IN AN ORDERLY FASHION. (3) A RULE PRESCRIBING THE
INTERFACE DISCIPLINES AND CORRECT PROCEDURES FOR COMMUNICATIONS WITH A
PROGRAM, SUBROUTINE, OPERATING SYSTEM, OR HARDWARE DEVICE. (DAN 1153)

PSL JOB
ALL OF THE COIrjTER PROCESSING THAT RESULTS FROM A SINGLE USER REQUEST TO
EXECUTE THE PSL FOR THE PURPOSE OF PERFORMING ONE OR PORE PSL FUNCTIONS SUCH
AS jPDATE, COMPILE OR OUTPUT. (PSL IS PROGRAV SUPPORT LIBRARY.)

QUALIFICATION TESTING
QUALIFICATION TESTING OF SOFTWARE CONSISTS OF PERFORMING A CONTROLLED
EXECUTION OF A DELIVERABLE PROGRAM PACKAGE SUCH THAT ALL SPECIFIED REALTIME
AND FUNCTIONAL REQUIREMENTS ARE KNOWN TO BE SATISFIED BY THE PROGRAm,
PACKAGE. NORMALLY, THIS INVOLVES: DOCUMENTATION DESCRIBING THE TEST (TEST
PLAN AND TEST PROCEDURES) APPROVED BY THE CUSTOMER THROUGH A REVIEW PROCESS;

89

I

GENERATION OF A TEST SYSTEM (HARDWARE AND SOFTWARE) TO PROVIDE THE SIMULATED
ENVIRONMENT, TEST CONTROLLER AND DATA RECORDER; AND CUSTOMER OBSERVED
OPERATION OF THE TEST AND COMPILATION OF THE TEST RESULTS. (DAN 1201)

QUALITY
THE DEGREE TO WHICH SOFTWARE CONFORMS TO QUALITY CRITERIA. QUALITY CRITERIA
INCLUDE, BUT ARE NOT LIMITED TO, CORRECTNESS, RELIABILITY, VALIDITY,
RESILIENCE, USEABILITY, CLARITY, MAINTAINABILITY, MODIFIABILITY, GENERALITY,
PORTABILITY, TESTABILITY, EFFICIENCY, ECONOMY, INTEGRITY, DOCUMENTATION,
UNDERSTANDABILITY, FLEXIBILITY, INTEROPERABILITY, MODULARITY, REUSABILITY.
(THESE ALSO HAVE SUBGROUPS; SEE P2 - 7, VOL 1, DAN 283)

QUALITY ASSURANCE
A PLANNED AND SYSTEMATIC PATTERN OF ALL ACTION NECESSARY TO PROVIDE ADEQUATE
CONFIDENCE THAT THE ITEM OR PRODUCT CONFORMS TO ESTABLISHED TECHNICAL
REQUIREMENTS. (P730/DS) (2) THE PROCESS OF ACTIVITY DURING WHICH THE SYSTEM
DESIGN IS AUDITED TO DETERMINE WHETHER OR NOT IT REPRESENTS A VERIFIABLE AND
CERTIFIABLE SPECIFICATION, AND DURING WHICH TEST PLANS AND TEST PROCEDURES
ARE FORMULATED AND IMPLEMENTED. THIS ACTIVITY ENSURES THE TECHNICAL
COMPLIANCE OF THE SOFTWARE SYSTEM--A PRODUCT--TO ITS REQUIREMENTS AND DESIGN
SPECIFICATIONS. QUALITY ASSURANCE IS AN INDEPENDENT AUDIT REVIEW OF ALL
PRODUCTS TO ENSURE THEIR COMPLIANCE TO A MANAGEMENT-DIRECTED STANCARD OF
QUALITY. (DAN LD7) (3) GUARANTEE MADE BY THE DEVELOPER TO THE CUSTOMER THAT
THE SOFTWARE MEETS MINIMUM LEVELS OF ACCEPTABILITY. THE CRITERIA FOR
ACCEPTABILITY SHOULD BE MUTUALLY AGREED UPON, MEASUREABLE, AND PUT INTO
WRITING. PRIMARILY, ALTHOUGH NOT NECESSARILY, WUALITY IS ASSURED THROUGH
SOME FORM OF TESTING. (SEE ALSO QUALITY METRICS)

QUALITY FACTORS
CORRECTNESS, RELIABILITY, EFFICIENCY, INTEGRITY, USABILITY, VAINTAINACILITY,
TESTABILITY, FLEXIBILITY, PORTABILITY, REUSABILITY, INTEROPERABILITY, ETC.
SEE ALSO: QUALITY

QUALITY METRICS
MEASURES OF THE CRITERIA OR SUBCRITERIA RELATED TO THE SOFTWARE QUALITY
FACTORS. (DAN 283, VOL 1, P 2-2.)

QUEUE
A STORAGE MECHANISM IN A MULTI-USER ENVIRONMENT THAT HOLDS JOBS OR DATA TO
BE PROCESSED WITHIN THE OPERATION OF A COMPUTER OR PROGRAM. MOST COMMON ONES
ARE TERMED "FIRST IN-FIRST OUT" (FIFO) AND "LAST IN-FIRST OUT" (LIFO). IN
SOFTWARE IT IS MORE OFTEN CALLED A "STACK". USED IN FIRST-IN FIRST-OUT
(FIFO) LIST ALGORITHMS. (DAN 1153)

RANGE IN MODULE SIZE
THE NUMBER OF SOURCE STATEMENTS IN A MODULE, INCLUDING COMMENTS. (SEL)

RAYLEIGH DISTRIBUTION MODEL
INDEXING TERM. REFERS TO THE PATHEMATICAL METHODOLOGY WHICH IS USED TO
CONSTRUCT, OR WHICH IS THE FORM ASSUMED BY, A PARTICULAR MODEL.

READ
THE READING BY PEERS OF THE RECORDINGS OF THE CURRENT PHASE TO LOOK FOR
ERRORS, INVENT TEST, ETC. (SEL) (ISO) TO ACQUIRE OR TO INTERPRET DATA FROM A

90

STORAGE DEVICE, FROM A DATA MEDIUM, CR FROM ANOTHER SOURCE. (ANSI-X3) SEE
ALSO CODE READING.

REAL TIME
THIS CLASS INCLUDES SOFTWARE COMPONENTS WHICH ARE DIRECTLY A FUNCTION Of
EVENTS OCCURRING AT, OR NEAR, THE CURRENT TIME. TYPICAL COMPONENTS WOULD BE
THE ATTITUDE CONTROL MONITORS. SINCE PAPTS OF MOST OF THE TELEMETRY
PROCESSORS ARE REQUIRED TO PROCESS DATA AS IT IS RECEIVED THEY TOO MAY BE
CONSIDERED REAL TIME. (SEL) PERTAINING TO THE PERFORMANCE OF A COMPUTATION
DURING THE ACTUAL TIME THAT THE RELATED PHYSICAL PROCESS TRANSPIRES, IN
ORDER THAT RESULTS OF THE COMPUTATION CAN BE USED IN GUIDING THE PHYSICAL
PROCESS. (ANSI-X3) (3) THE OPERATION OF A COMPUTER OR COMPUTER PROGRAM IN
SUCH A WAY THAT COMPUTATIONS ARE SYNCHRONIZED WITH A PHYSICAL PROCESS OR
ACTIVITY.(NASA)

REAL TIME PROCESSING
A TYPE OF PRCCESSING WHERE RESPONSES ARE REQUIRED TO STIMULI IN A TIME
PERIOD (USUALLY SHORT). USUALLY HELD TO BE THE TYPE OF PROCESSING ASSOCIATED
WITH THE CONTROL OF A PHYSICAL PROCESS. (ANSI-X3Hl)

REAL-TIME EXECUTIVE PROGRAM
THE PORTION OF A DFCAS COMPUTER PROGRAM WHICH CONTROLS THE TIMING OF VARIOUS
COMPUTATIONS AND OPERATIONS. (NASA)

REAL-TIME SYSTEMS
A REAL TIME SYSTEM IS A SYSTEM THAT INTERACTS WITH A PHYSICAL ENVIRONMENT TO
PERFORM A USEFUL SERVICE FOR THAT ENVIRONMENT OR TO ADEQUATELY CONTROL THAT
ENVIRONMENT. ENVIRONMENTAL INTERACTION AND THE NEED TO MAINTAIN ADEQUACY OF
CONTROL FREQUENTLY (BUT NOT ALWAYS) TRANSLATE TO STRINGENT RESPONSE-TIME
REQUIREMENTS. (DAN 303)

RECORD GENERATORS
A COMPUTER PROGRAM USEP TO CONSTRUCT TEST DATA. ESSENTIALLY, THE PROGRA,
CONTAINS A LIBRARY OF DATE FORMATS, INCLUDING THE LOCATION, SIZE, CHARACTER
(ALPHA OR NUMERIC) AND NORMAL CONTENTS OF EACH FIELD OF EACH RLCuRD TYPE
FROM WHICH IT GENERATES RECORDS REQUIRED FCR TESTING. (DAN 134)

RECOVERY BLOCK STRUCTURED SOFTWARE
A SOFTWARE STRUCTURE INCORPORATING REDUNDANT FAULT-TOLERANT PROVISIONS FOR
FLIGHT CRITICAL APPLICATIONS MODULES, NCN-kEDUNDANT MODULES WITH ERROR
DETECTION AND FLAGGING FOR NON-CRITICAL FUNCTIONS, AND A RECUNUANT
FAULT-TOLERANT TASK SCHEDULER. (DAN 225) (2) THE RECOVERY BLOCK IS A MEANS
OF INDICATING PORTIONS OF A SYSTEM WHOSE OPERATION MUST PASS A DYNAMIC
ACCEPTANCE TEST DESIGNED TO DETERMINE PROPER OPERATION. IF THE SYSTEM FAILS
THE TEST, AN ALTERNATIVE PROGRAM FOR ACHIEVING THE DESIRED RESULT IS
AUTOM4ATICALLY EXECUTED. (DAN 668)

RECURSION
IN PROGRAMMING, RECURSION REFERS TO THE REPETITIVE SLLF-LALLING OF A
FUNCTION UPON ITSELF (UNTIL A TERMINATION POINT IS REACHED).

REDUNDANCY
REDUNDANCY IS THE RATIO OF THE QUANTITY OF A PARTICULAR RLSOURCE USED IN A
SYSTEM TO THE QUANTITY OF THE RESOURCE ACTUALLY NEEDED TO ACCOMPLISH THE

91

SYSTEMS TASK. REDUNDANCY MAY BE A DESIRABLE CHARACTERISTIC (ERROR DETECTION,
ERROR CORRECTION FAULT-TOLERANCE) OR UNDESIRABLE (CAPACITY IN EXCESS OF WHAT
MAY EVER BE NEEDED, DUPLICATE DATA FILES FOR PROCESSES WHICH COULD USE THE
SAME FILES, ETC.). REDUNDANCY MAY REFER TO DATA, CODE, OR HARDWARE DEVICES.

REGRESSION TESTING
REGRESSION TESTING (RT) IS A METHOD rOR DLTECTIE:C ERRORS SPAWNED BY CHANGES
OR CORRECTIONS MADE DURING SOFTWARE DEVELOPMENT AND MAINTENANCE. A SET OF
TESTS WHICH THE PROGRAM HAS EXECUTED CORRECTLY IS RERUN AFTER EACh SET OF
CHANGES IS COMPLETED. IF NO ERRORS OCCUR, CONFIDENCE IS INCREASED THAT
SPAWNED ERRORS WERE NOT CREATED IN THAT CHANGE... RT IS AN INVALUABLE AID
DURING PROGRAM MAINTENANCE TO PREVE14T THE "X STEP FORWARD, Y STEPS eACKWARD"
SYNDROME. SPAWNED ERRORS ARE PARTICULARLY ONEROUS FROM A PROGRAM USER POINT
OF VIEW, SINCE THEY CONTRIBUTE TO USER DISTRUST ("IT USED TO WORK; WHY
DOESN'T IT NOW?). RT IS PRIMARILY USED IN A MAINTENANCE-INTENSIVE
ENVIRONMENT. HOWEVER. IT HAS APPLICAbILITY TO ANY PROGRAM IN MAINTENANCE,
REGARDLESS 6F THE QUANTITY OR FRECUENCY OF CHANGE... A SET OF TESTS IS
MAINTAINED AND UTILIZED PRIOR TO RELEASE OF EACH NEW SOFTWARE VERSION. IF
ERRORS OR CEVIATIONS ARE DETECTED, THEY ARE CORRECTED AND) THE REGRESSION
TEST IS REPEATED PRIOR TO RELEASE. If ACCEPTANCE TESTS ARE USED. THEY SHOULD
FORM THE BASIS FOR THE REGRESSICN TESTS. TESTS SHOULD BE ADDED AS NEW SOFT
SPOTS ARE IDENTIFIED DURING MAINTENANCE. BECAUSE OF THE FREQUENCY OF
RERUNNING, TESTS SHOULD BE SELF CHECKING WHENEVER POSSIBLE. ALSO SEE -

TESTING. (SET)

RELIABILITY DATA
INDEXING TERM. REFERS TO DATA USED TO EVALUATE RELIABILITY. OR TO DRIVE ANY
ONE OF THE VARIOUS RELIABILITY MODELS.

RELIABILITY ESTIMATION
RELIABILITY ESTIPATION, IS PERFORMED EY TAKING SOFTWARE RELIABILITY
MEASUREMENTS ON AN EXISTING PROGRAM AND MODIFYING TIHE RESULT TC REPRESENT
THE RELIABILITY IN A DIFFERENT OPERATING ENVIRONMENT. A TYPICAL APPLICATION
FOR RELIABILITY ESTIMATION IS TO DETERMINE DUFING TEST WH[THER AN
OPERATIONAL RELIABILITY GOAL CAN BE MET. (2) (FOR COMPUTER PROGRAMS) - THE
PROJECTION OF PACROSCOPIC SOFTWARE RELIABILITY DURING THE SOFTWARE
DEVELOPMENT PROCESS BASED UPON A MODEL WHICH EMPLOYS PARAMETERS SUCH AS
SOFTWARE ERROR DETECTION RATE PER UNIT TIME. EXAMPLE: EMPIRICAL MODEL.
(NASA)

RELIABILITY EVALUATION
A COLLECTIVE TERM WHICH ENCOMPASSES ALL OF THlE SOFTWARE RELIABILITY METRICS
RELATING TO RELIABILITY PREDICTION. RELIABILITY MEASUREMENT. RELIABILITY
MODELING, AND RELIABILITY ESTIMATION.

RELIABILITY INDEX
THE PROBABILITY THAT A PROGRAM OR DEVICE WILL PERFORM WITHOUT FAILURE FOR A
SPECIFIED PERIOD OF TIME OR AMOUNT OF USAGE. (DAN 1153)

RELIABILITY MEASUREMENT
FOR RELIABILITY MEASUREMENT, THE SOFTWARE IS OPERATED OVER A PERIOD OF TIME,
SEGMENTS OF THE OPERATION ARE SCORED AS fAILLbPE OR SUCCESS. AND FROM THESE
SCORES A SINGLE INDICATOR OF MEASURED RELIABILITY IS GENERATED. (2) (FOR
COMPUTER PROGRAMS) - THE ASSESSMENT OF SOFTWARE RELIABILITY BASED UPON

92

Ii

SOFTWARE ERRORS DETECTED DURING OPLRATIONALLY REPRESEINTATIVE EXECUTION OF A
PROGRAM. USUALLY DURING DEMONSTRATION TESTING. EXAMPLE: SYSTEM SIMULATION.
(NASA)

RELIABILITY MODELS
A SOFTWARE RELIABILITY MODEL USUALLY REFEPS TO THE MT11EATICAL fORM Of THL
EQUATIONS WHICH ARE USED IN ESTIMATING TiE NUMBER OF REMAINING ERRORS IN A
PARTIALLY DEBUGGED SOFTWARE PACKAGL. (DAN 238)

RELIABILITY PREDICTION
RELIABILITY PREDICTION IS A NUMERICAL STATE, NT ABOUT THE kELIABILITY OF A
PROGRAM BASED ON SIZE. COMPLEXITY. ANL OllIER GENERAL CHARACTERISTICS PATH R
THAN ON DATA OBTAINED FROM THE PROGRAM ITSELF. PREDICTION OF RELIABILITY CAN
BE MADE EARLY IN THE PROJECT. IT CAN BE USED FUR RLSOURCL hLLOCfTI(N TO
MODULES AMONG THE TOTAL SOFTWAPE AND FOR HAkDWARE/SOfTWARL TRADEff IS ;ND
OTHER MANAGEMENT PURPOSES. (2) (FOR COMPUTER PROGRAMS) - THE PROJECTIoN Of
MICROSCOPIC SOFTWARE RLLIAEILITY. POSSIBLY IN TERMS Of ERPORS PEP
INSTRUCTION, BASED UPON QUANTIFIAELE CHARACTERISTICS (Ok IHt-LOMEN, EXHIBITED
BY A PROGRAM. LXAMPLLS: STATISTICS,SOFTWARL METRICS. SOI ,,APL PHYSICS.(%ASA)

RELIABILITY TREND
DEGREE OF CONSTANCY OF THE fAILURE RATE AND/OR FAILURE RATIU UI A S(fT ,ARI
PROJECT OVER TIP.E. (DAN 226)

RELIABILITY-DIFFERENCES OF OPINION
FEUDS AND DISPUTES (PUBLISHED) BETWEEN MEMBERS CF THE SOFTIWARE COMMUNITY

WHICH HAVE AN IMPACT UPON CONCERNS OF DACS (GLGSSAPY, THLSAURUSjETC)
(INDEXING TERM ONLY)

ERELABLE

SEE RELIABLE SOFTWARE

RELIABLE SOFTWARE
SOFTWARE IS RELIABLE IF ITS USE LNAbLES A SYSTLM TO PIPFOPIA WITiIN A
SPECIFIED ERROR TOLERANCE. THE ABOVE DEFINITION CAN EL INILRPRLTLD IN TERMS
OF TIME OR IN TERMS OF NUMBER OF EXPOSURLS TO A UNIT APPLICATION. IN THE
FORMER INTERPRETATION, FRLCULNCY OF FAILURE IS EQUATLD TO THE FRACTION OF
THE TIME THE SOFTWARE IS IN A FAILED STATE. IN THE LATTER INSTANCL,
FREQUENCY OF FAILURE IS THE FRACTION OF EXPOSURES IN WHICH THE SOFTWARE
PREVENTS A UNIT APPLICATION FROM BEING COMPLETED AS EXPECTED. THE TWO
INTERPRETATIONS ARE DIRECTLY RELATED WHEN "TIME" REPRESENTS THL (IPERATIONAL
USAGE TIME, AND THE NUMBER OF EXPOSURES PER UNIT TIME IS SPECIFIED. SOFTWARE
IS RELIABLE ONLY IF NO FAULTS EXIST IN A PROGRAlv,, ROUTINE, LR "tMODULE". FROM
THE MICROSCOPIC VIEWPOINT FAULTS ARE THE ACTUAL OR POTENTIAL MANIFESTATIONS
OF ERRORS MADE BY THE PROGRAM DESIGNER OR CODER. (SET)

RELOCATABLE MACHINE CODE
A (PORTION OF A) COMPUTER PROGRAM., IN MACHINE LEVEL LANGUAGE. EXPRESSLD IN.
SUCH A WAY THAT THE INSTRUCTIONS AND DATA CAN BE STORED IN MLMORY LOCATIONS
ASSIGNED DURING LOADING. (NASA)

REPAIRABILITY
REPAIRABILITY IS THE PROBABILITY THAT A FAILED SYSTEM(S) WILL EL RESTORED TO
OPERABLE CONITION WITHIN A SPECIFIED ACTIVE REPAIR TIME WHEN MAINTENANCE IS

93

DONE UNDER SPECIFIED CONDITIONS. (DAN781)

REPAIRABLE
A SOFTWARE PRODUCT IS REPAIRABLE TO THE EXTENT THAT A CHANGE TO CORRECT A
DEFICIENCY CAN BE LOCALIZED, SO AS TO HAVE MINIMAL INFLUENCE ON OTHER
PROGRAM MODULES, LOGIC PATHS,OR DOCUMENTATION. REPAIRABILITY IS A
SUBCATEGORY OF MAINTAINABILITY, BUT THE IMPLICATION IS THAT A SOFTWARE
PRODUCT BECOMES NON-REPAIRABLE WHEN THE EFFECTS OF A PROPOSED CODE FIX ARE
NOT UNDERSTOOD WITH SUFFICIENT CONFIDENCE, OWING TO PREVIOUS POOR
MAINTENANCE PRACTICES, INCLUDING LACK OF TRACEABILITY. IN OTHER WORDS, A
STATE OF NON-REPAIRABILITY IS REACHED WHEN IT CAN BE CONCLUDED THAT IT IS
COST EFFECTIVE TO REDESIGN A SIGNIFICANT PORTION OF THE PROGRAM. ALSO SEE
MAINTAINABLE (SET)

REPEATABILITY
A PROPERTY REQUIRED OF SOFTWARE TESTS, THAT EACH TIME THEY ARE EXECUTED, THE
RESULTS WILL BE THE SAME (DAN 1201)

REPLUGGING
DYNAMIC (WHILE THE SYSTEM IS RUNNING) REPLACEMENT OR RESTRUCTURING OF A
MODULE'S IPPLEMENTATION IF THIS REPLACEMENT OR RESTRUCTURING DOES NOT AFFECT
THE MODULE'S SPECIFICATION. (DAN 279)

REPORTING
A VAJOR SUB-DIVISION WITHIN CONFIGURATION CONTROL. THE REPORTING AND
DOCUMENTING ACTIVITIES NEEDED TO MONITOR THE STATUS OF CONFIGURATION DURING
THE LIFE OF A SYSTEM. (DAN LD7)

REPRESENTATION
A DESIGN AND CODING TECHNIQUE THROUGH WHICH COMPOSITE INFORMATION IS STORED
OR CONVEYED THROUGH THE ARRANGEMENT, ORGANIZATION OR JUXTAPOSITION OF
COMPONENT ELEMENTS. (ABBOTT)

REQUIREMENTS
A SYSTEM SPECIFICATION WRITTEN BY THE USER TO DEFINE A SYSTEM TO A DEVELOPER
(A STATEMENT OF WHAT THE USER (PURCHASER) EXPECTS THE SYSTEM TO INCLUDE
AMONG ITS CAPABILITIES.) (SEL-P.ODIFIED)

REQUIREMENTS ANALYSIS
ANALYSIS PERFORMED TO ENSURE THAT THE DEVELOPER'S SOFTWARE REQUIREMENTS ARE
COMPLETELY AND CORRECTLY DEFINED. AS PART OF THIS ACTIVITY, ANALYSTS CHECK
EACH SOFTWARE REQUIREMENT FOR CONSISTENCY WITH OTHER REQUIREMENTS AND, WHERE
POSSIBLE, TRACE SCFTWARE REQUIREMENTS TO THEIR SOURCE IN SYSTEP.
REQUIREMENTS, INTERFACES, (R USER NEEDS. EACH REQUIREMENT MUST BE DETERMINED
CORRECT BY INDEPENDENT DERIVATION, BY COMPARISION TO SIMILAR EXISTING
SYSTEMS, OR BY CONSULTING STANDARD REFERENCES. FOR THOSE SOFTWARE
REQUIREMENTS WHOSE VALIDITY CANNOT BE DETERMINED A POSTERIORI, OTHER
SPECIALIZED TECHNIQUES SUCH AS MODELING, TIMING, AND SIZING ARE USED.
ANALYSTS EVALUATE REQUIREMENT TESTABILITY TO ENSURE THAT MEASURABLE
ACCEPTANCE CRITERIA ARE IMPLIED BY EACH SOFTWARE REQUIREMENT. FINALLY, THE
ENTIRE SET OF SOFTWARE REQUIREMENTS IS EVALUATED FOR COMPLETENESS AND FOR
PROPER ALLOCATION OF REQUIREMENTS TO SOFTWARE FUNCTION. SYNONOMOUS WITH
REQUIREMENTS VERIFICATION AND ALSO WITH SYSTEM DESIGN REQUIREMENTS. (2) THE
PROCESS OF STUDYING THE CUSTOMER'S PROBLEM FROM BOTH THAT OF THE DEVELOPER

94

AND THE USER IN ORDER TO ARRIVE AT A FUNCTIONAL DEFINITION OF SYSTEM
REQUIREMENTS. INCLUDES ALL ACTIVITIES RELATED TO ANALYZING AND DEVELOPING A
CLEAR, UNEQUIVOCAL, AND MUTUALLY-AGREED-UPON SET OF FUNCTIONAL
SPECIFICATIONS FOR A PROJECT. (DAN L07)

REQUIREMENTS AND DESIGN SPECIFICATIONS
PRECISE SPECIFICATIONS OF THE OPERATIONAL CHARACTERISTICS OF THE FINAL
PRODUCT. (DAN LD7)

REQUIREMENTS ENGINEERING
THE DISCIPLINE OF APPLYING ENGINEERING, ESPECIALLY, SOFTWARE ENGINEERING,
TECHNIQUES TO BOTH THE DEVELOPMENT AND STATEMENT OF REQUIREMENTS. THE OBJECT
IS TO BRING VISIBILITY TO THOSE TYPES OF DEFICIENCES IN THE REQUIREMENTS
WHICH RECUR REGULARLY ACROSS A BROAD RANGE OF SOFTWARE DEVELOPMENT PROJECTS.
ONCE VISIBILITY HAS BEEN ACHIEVED, THESE DEFICIENCES CAN BE ELIMININATED AND
THUS, THOSE TYPES OF ERRORS WHICH ARISE FROM INCOMPLETE OR POORLY DEFINED
REQUIREMENTS CAN BE PREVENTED.

REQUIREMENTS ENGINEERING METHODOLOGIES
INDEXING TERM. REFERS TO DEVELOPMENTAL METHODOLOGIES WHICH TREAT THE
GENERATION OF SOFTWARE REQUIREMENTS AS AN ENGINEERING DISCIPLINE.

REQUIREMENTS LANGUAGE
A COMPUTER PROGRAM USED TO PROVIDE A SUCCINCT AND UNAMBIGUOUS SPECIFICATION
OF THE SYSTEM, THEN COMPUTER REQUIREMENTS. IT MORE PRECISELY ALLOWS
REQUIREMENTS TO BE COMMUNICATED AND TRANSLATED IN A HIERARCHICAL MANNER.
(DAN 134)

REQUIREMENTS PROBLEM CATEGORIES
THE CLASSIFICATION SYSTEM FOR SOFTWARE REQUIREMENTS PROBLEMS.

REQUIREMENTS PROBLEMS
PROBLEMS IN THE SOFTWARE SYSTEM CAUSED BY DEFICIENCIES IN SOFTWARE
REQUIREMENTS.

REQUIREMENTS SPECIFICATION
TRANSLATION OF AN OPERATIONAL (OR APPLICATION) REQUIREMENT INTO A STATEMENT
OF THE FUNCTIONS TO BE PERFORMED. (DAN 773)

REQUIREMENTS SPECIFICATION LANGUAGE
A LANGUAGE USED TO SPECIFY A SOFTWARE SYSTEM WHICH IS SUFFICIENTLY FORMAL IN
THE MATHEMATICAL SENSE, THAT CONCLUSIONS CONCERNING CONSISTENCY AND
COMPLETENESS M4AY BE DRAWN FROM THE SYSTEM'S SPECIFICATIONS EXPRESSED IN SUCH
LANGUAGES. (DAN 874-MOD)

REQUIREMENTS SPECIFICATION SUPPORT TOOL
ANY TOOL WHICH PROVIDES A MEANS FOR EVALUATING COMPLETENESS AND CONSISTENCY
OF THE REQUIREMENTS SPECIFICATION TO THE DESIGNER'S SATISFACTION AND FOR
DEMONSTRATING BEHAVIOR TO THE CUSTOMER. THE TOOL SHOULD ALSO ASSIST
THE DESIGNER IN THE DOCUMENTATION, MANIPULATION, MODIFICATION, AND
CATALOGUING OF THE DESIGN THROUGHOUT THE ITERATIONS UNTIL SIGN-CFF. (DAN
874)

95

Um

REQUIREmENTS TESTING
EXECUTION OF A PROLRAD UNDER CONTROLLEL, (Ot4tI(tAS % D(WONSTRATL THAT ALL
STATED OR IMPLIED REQUIREMENTS AND PrFRFC~ANCL CRITEVIA HAVE BEEN M T. (VAN
1153)

REQUIREMENTS VERIFICATION
REQUIREMENTS VERIFICATION (rUQVER) IS ThE PruC[.S Aul oETEr,4NING W,1ETi UH
NOT THE COMPUTER PROGRAM r4UIREKeNtS REFLECT THE CuWPUTER-APILICAKi
PORTIUK OF Tilt SYSTEM SPLCIFILATIU. ITS PkIARY PurS[Is TV IIDA[hT
AMBIGUOUS, ILL-OLfINED, AND IADL(UAT[(MILIU ktlr.VklwhS LiALV IN TIll
ACQUISITION CYCLE. kLQVER SELLS t- OLtIERPtIt 11 4h CUh1pt U4 UtDI(hL&
WORK. ITS INTENT IS TO VtkIrY THAT EACH rE(juiRtt T $ TAtO IN SYS"[v
SPECIFICATION IS CLEARLY TRANSLATED INTO S YSIll rtl UIkE!N Thi% T AN BL
MECHANIZED. SIMULATIUOS, ICLLMENT RESEARCH, /h; ANALvSI ARE T HE TlCihQLU'k.
PRESENTLY ASSOCIATED WItH RIX EF. .(SET)

RESERVATIONS AND DISPATCHING APPLICATIONS
SOFTWARE AP'LILATIUN TC SYSTLS SuCi AS ; Ntt ,If f(iv:'I(F, (A, kti .
RESERVATIINS, 1IR1 CEPT'S. P'OLICE VPlT'S ELL.

RESILIENCY
RE SIILNCY REFERS 713 S101(SI. .. , Rt~ 'I i4'lI t 1
DETECT AND RECUVLR fROP A 6UIVIN PJJIIPL9 KtP'fl tf e'\iS :k) I1 I' I.iAL c
A SUFF ICIENTLY HlGl DEGREE TAT A vLiP, (:f lit. k 't4. S1iV4C((A16 :Gh(f
THE POSSIBILITY Of SENkI(E 1AILURL. 3) if 11q Si,(i I * Ov1(;1Ul 1'

DETECTION AND kECVERY FRU N LRRORS, Tte (l o1) EIPUR 1 UA L
A "BEST EFFORT" IS PADE TO CCkTINUL StpvYCI, At,4 4) T. Af4%ut of Tifvllt
BY A SINGLE USIR SPOULL It.AVE htE.L:G4sL1 111W(th (1111. 4 1
SERVICE. (SOURCE UkNUkh)

RESOURCE
A SOURCE Of SUPPLY UP SUPIORT. (ALS'.-D'I) f 4w x (P 4: 1 Atfl I
MEANS THAT PAY BE ALLOCATED T iD 1K A((CCPLd WEX? 0eN #- 'At. 'IN
CONCURRENT PROCSSES, SPAMRE RES ,IE! 01 (AC TI PZt i A "AS tV(I [i"
(ALLOCATED FOR MUTUALLY EXCLUSIVE L) CR 1Vl ItAL" ("AN !h IGkoCiI V ,

SIMULTANEOUS OPERATIONS UNLER STATED LNIWAT:f0S). RtLECtS U (DlU(i(- bm'NI
PROCESS AND CONSUMEID BY AhilitR ARE SAID TO Ft "MtPAY RL*.L15. (WI+,t.
RESOURCES ARE *PEPRAENT-. (A. 1153) Stt LSC: (UT Rt ESOU(1S

RESOURCE ALLOCATION
THE AMOUNT OF RESOURCES (TIKE, IONLY, iPSOfNEL) t?#'Itt (:% f A~l'
PORTIONS OF THE SOFTWARE (OR SYSTEM) EVELOPMENT.

RESPONSE
A MESSAGE IN ANSWER TO OR AS A REACTIGN TG A UftV*0S A(TIlU'. (051-301)

RESTRUCTURING ALGOIRITIIS
AN ALGORITHA WHICH UTILIZES A EL(.CL REFLRE t STlR) 16, TO 1FODUCt A
RESTRUCTURING GRAPH WHGSE NODES CORRESPOND TO THE PLOC. AI WHOSL EDGES
HAVE LABELS SOMEHOk REPIESENTIRG THE DESIRASILIIT OF S1C*IO'4G lt. IWO BLOCtS
THEY CONNECT IN ACJACEI4T AREAS Or tlt VIRITUAL AWI DSS SPA(E (DAN 435)

RESYNCHRONI ZAT iON
RESYNCHRONIZATION IS THE PROCESS OF HALTI(, TWO COMPUTERS AhV SIMULTIANOUSLY

*%

*1 ~*I*'

k[STAkdIf.. blt,1 to~~ il. tt ii IL[Mc/ fdl ,CAL(C Y.k %
A IT 1i , 6I. !!t4 i t ~ t i ? z. i I' I. le ~ I L 1-J A*L ~t
IMLE001 hT IL i L -L~ 64h ~

kTURN

RiUSABIL I I
W A:L~ I 'o> 1, o'S 1Y Al, If

ROGOTICS

ROBUS TNESS

cup~i% iF 7c 7Qvo,4 $i *i~4~ *t

617Xt AA RG I?S Pj V~ I~ ; s,.h !i ' I~

ROt. I ACK
A PRO(AAPF~P'1 r , I 5'd 2 (l.1:i '-2 7 i 4 ? (

ROUT I %I
A PROG(,AP 6P P'Ifl(PAlW WP tifL 7#-Al RA o&yI Jplf 4C $ i*:

ROUT I hr DATA, Al SO (ALM T PA(W M % JAA* f* Ii~ [A~ I VV ilT
ACCOU~It Of tlr RE' (4 ,&!A Tr[, P~ ~i(4 A 1 ir :' Us

NDVIDIAl. (rDM4 617)

SAM1

(SSLIl CII.M 4 V 11,U fP [%b 1 ~ 16 "

LBILTIVE IS TU lo(LLL A SYSTLF uSING HIEk.ARCHICAL DLCLPPUIT JUN AND DATA
I LOW. THE SCHEME IS U.*CPUSI ti T14RLL ELEMENTS; A HIEkAkCHICAL TRI
STIRUCIuRt. 60,10! VESCkICLS HOWh A IPAJWCULAR U~IAAto F ITS INT% THE SVSTLM, AN
ACTIVITY VATA1-L(& DIAUAJ attiI C1i L)LSC<IPLS THE ACTIVITY-LTA -_0
VELATILk~h:1S (,f A SWSTEP, At,, A LL1)I11Uh CliARI kHILH buL?10 THE.
FUNLTIckAt blHfAVttA 0 A Ui.AAM.. N4~ ALT0ATAIuh VAdIACL fOP THL SAWM DESIGN

SEk[NTATIUN SL LNS L ALLIC ,A#4LI.

SwR
(~~~YSTEM~~-t dLtET AJLLTLPL l FA1itE DES$(A PUtULLING TOOLS

IHt~ol Suk4'u5kT A SRU fit Y;LP L f 1: L f o L t IW 4<W&{tOLP f UP SLf TWAkE 01
HAMAPL LUPLkd (VANh~

SCENARIO
AN ALTUIYArtL Ttk! (L 4 7P L PAt #ALI It', N 01.tA i TEST EXECuTION CONTROL

604 . 7 LAA. M'.V EItj1! S ~L M TC A(T!IVATI ?',L TEST A TAP'LT
PfJG4P. (L'AP jilit)

SCHEDULE ISTIIATIOR
THE P'RL)ESS uI LA f1PP'%:hL T!i$ i T 0 j %K EfLi I t) 10IPILTI A LIVEN
PNO-JECr. 'HE I-PUCI5~, ILALLV ALsC. o'1(tL lAS ICNASITING TfL T I~ y MfiEUVL LT7u
REACHt VAktL145 P14 %,TU%15 Ih flit 11G.Ltt. ITHI AMt !w(j API'1UACii'; THE kACRO
APPROACHi 6IIC Mif NRATE S Ali I 1P C It C (LPVE Uf L I ft-(YCL t P1&NI R AU;. I ST
7tIME . ANIL) rPE 011(Pi A PRLACI kV '4(S!AY1$ k h I 1X1ING IHE S ; ZE. STAR T DATE ,
ANU VAt tU k1 ACHfC $I T4#L*AbL ACT IIV ITIY. 1,AtE1S AUJVSTM(NI S I Ok CAL I 6L
oF pt~IN! ohk., L i'Ll I:TV , AAL 0 !IliR 14 TO'ps, Apt/(E Th I 1lIAc 7(* S In A
ft1 TWiIRX . ARE Si 111- A5 1. 1 ,ti ~lt1 L I "I't . 'I If I&T Ii71 TI I 1-1t ST VATH I N
THE NE tWIRO . QAh 1,4)

SCHEDULE MAKWHINT
A 0mE~lf(X ul 1KTI T NHAT kuPPi lkL~ t (it ThE1 h IioItffy j ?T Of A
'VT[P . (tAN Lt?)

SECHEDIX I NG
M~ UPERATING 51ST110S, SCKKDLING RtfERS TO 114 /{L((AI(IN 01 JC~bS FROM A,

SCHICK-WOLVERTON PWL
A 504iARE RELIAEIITY 1FIJU)lE DEVILOIIL BY DRS. P. IW0LVIRTO AMD G. SCHI1(1 0f
tRW. THE1 BASIC ASLOPtIOIS FOR TI SCHICkioOsLVE10h W'U APE: 1) T4LE AFIJUNT
OF D(EUGGING TIPt 9tTWIt4 ERUP (CLt*k1N(iS IAS A RAYLEIGH CSTRICUTION. (I)
tHEt ERROR RATE IS PRiUKRT:hj,1. I(Ilit ftbER 01 EP(MS RtMINNL. AND TU THE
TIME SPENT IN DEBLCGGi. .3) EACH ERROR DISCCVLPED 15 1ktE;IATELY REMOVED,
THUS REDUCMN THE IIUHR Of tRRI*P$ BY ONE. THE MODIFIED SCHIC0-4OLVERTON
POEL IS SIKILAR TO TII[ABOVE. Wit"4 THE EXCEPTION THAT ASSUM~P71ON 2 IS
RIPLACE BY THEl POLLC~dNG ASSJMPTICht, 2) TilL ERROR DISCUVERY RATE IS
CONSTANT DURIN A TIRE INTERVAL ARE, IS ii %bOfTI(IAL TO THE NUMBER OF ERRORS
RENMING FOLLOWaING THE (1-1))T TIffE INTERVAL AND THEl TOTAL TIME PREVIOUSLY
SPENT IN TESTING, INCLUDiNG Ae -AVERAGID ERROR SEARCH4 Tit',[DURING THE
CURRENT CEBUG INTERVAL I. (IDA4 402)

SC? IM IF ic
A SOFTWARE C(*PotNT PAY BIE IN THIS CATEIIA*Y If IT IS RELATED TO SOME
RAT'IATICA. ALG4ORITM.P ENGIMLERING PROBLEM, LAWE Of PHYSICS, OR CELESTIAL

9c2

MECHANICS PRUBLEM. POST ALL GI lfE FULL .VSTIPIS DLVLL(4 t ,'LL IAiL ..

THIS CATEGURY, 6hILL THE VAPIULS PIECES UR KVUbLES MAY tALL INTu S(*f uf Tdi
OTHER CLASSES. (SULCIFIL TU NASA-LOL14JRD) (SIL)

SCOPE
THE RANGE WITHIN WHICH AI IUENTI IL UNIT LISPL/tS I ISiL. J(L;L (. At ,;I*,
PEFERS TO TiE BUUiUARILS iITHI1 Wi-ILli A UATA STfI. LkAA1 I, LWi I L Y 1
REPAINS AN iNTEGRAL LhIT . l(uL Ofi (t TkOL kil' tll t i [bb i .t '1 14k A

PRUGRA, THAT PUTEN TIALLY kAY L)LLT It .Lhk L I) ,4'ilk T(A (2Tit [.;U!.

SCOPE OF ERROR LLJTLS THE SIT OF SUBPODLLWS TAT A. 1 ;UT[,T:AlLtY A !LL,
BY THE CLTECTION OF A IALIT Ih A (JIL MODULI. (bAh ll3)

SCORING PROGRAM
A COMPUTLR PRUGRAN THAT PEPFRLkRS Tii SAt C.*L(ULATl(0? - AS lit TAkRLl I..As7LY.
THE PROGRAM INCLUDES A CL*!PAPI. CAPAIL'"Y '.C 'HAT RiLTA. (UPFITL 't v tji
TARGET SYSTEM CAN BE ALTUkATICLL (PARLL, Aht t2SC.bNCIf S FLfCI. JFAt,
134)

SECRETARIAT
A CENTRALIZED FACILITY CONS:STINO % 6 cS':L, ;(iLs, :fARY i' . .
PRODUCTION SERVICES AVALAbLL ,W [LVLLPL1 F RL"..CTS, f. TI(+'(.
RAISING PRODUCTIVITY, LI N. sAh I'hS, ;4.t I ,11(tL, i kP11.. (I At,
S53)

SEMANTICS
THE RELATION BETWEEN SYMBOLS A14) THEL!, ,(fA11,S. (%SI-) 31-)

SEMAPHORE
A SHARED DATA STRUCTURE USED FY COlt(1UktI.T I'FC.L(S!l ! lT !f "
SYNCHRONIZATION, CONSISTING OF AN ABITPATED VARIAbLL TiAT .,iNS ThE ',E
NUMBER OF "MESSAGES" SENT, NOT YET PE(EIVLD, Ahb A (l'tl .1JAI rVJ-i;.,
LIST (IF NOT EMPTY) OF PR.kOCSSE S (LRPIhItLY kAo2N', I ,FL I 4 A I',AGE'.
1153)

SEQUENTIAL TESTING PROCEDURE
A PROCEDURE FOR SEARCHING A UECISI(h TAPL ,(,% ,, , ', ',0-,1

WHICH RULE APPLIES TO A GIVE?. ARRAY (,I ANSWS "' P i T ,','. 0, . ,
AN ALGORITf'M FOR PROCESSING THE UPPIR PALI (' A I " UE ,
WHICH RULE IS TO BE ACTIVATE[. (DAN 1153

SESSION
A PERIOD OF A GIVL USER'S AC(tS' ' , ."sl j * ,, .
(ANSI-X3HI)

SIDE-EFFECT
A SECONDARY EFFECT DUE TO CONsECTIVITY AP'' U M(l 'L W-: I I'I -,
PROPAGATES IN THE SAME MODE AS PROGRA/ C(NNITl(tS: 0%'Ri.l, IATA, S|IVI([..

CONTROL SIDE EFFECTS ARISE IN NON-FROPIP PR kA'INO, I'ATA (N(TION, S1DE
EFFECTS ARISE IN USE OF COMON, EXTERNAL (OUPLING, C(TiNT (0LLNG, ANO NOT
UTILIZING THE NORMAL PARAMETER PASSING MECVANISM, AND SIRVICE SIDE tf1L(liT
ARISE WHEN THE ROLE OR ACTION OF A PROCEDURE VARIES WITH ITS APPLICATION (AS
A RESULT OF GLOBAL VARIABLES MODIFIED, LOCAL DATA MOIDIFIED AND RETAINED, uR
CHANGES IN HARDWARE STATUS). (DAN 1153)

99

*1

SIGN OfF
TO INLIATL THE It& Of ; PtU1L Ul ILi~I1f ItCAI11' I% 11,4 SYST11.. (AN-I-$-31f
SEE ALSO SLN UN.

SIGN Oft
TO ILLTlFt UPASL hi TuA S tfM AN&V Ic .t AL1P1LU Ir T"AT yS'1 ..
(AS I -X311)

SIIMULATION
THE PRACTICE Of EJJLAIIhG TiL IPLSLh(L Ah, AcTIh Of THEf INTLkIFACE NOkALLY
PRESENTED bY A SCITWAJ, U MLLt CR HAPCiAN LIVCL. (LAti 1?uI)

SIMULATION MODULEPROGRA4
A C0.'UTLH PRUGU, TrAT PRuV:LES TIIE TAP.ET SYSTL WITH INI;S Ok i.iSitStS
THAT RLSEMBLE T,OSE ThAT "VE ELN -'POVI.EL bY TL PRUC SS fOR THE CEVI(L
BEr I? SIMULATED. (Z) A P,,(.JA. aU~S PLRPIoSE I"S TOTI MITAIL T E NTE AL0 (0
UI HER ,UI! TWAIt ML 11 ', 1U I 'ALAP LVL tLE L. (VC AS I;.OI

SINGLE ENTRY SINGLE EXIT CONTROL STATEMENT
ANY CUP;TRUL SrTATEMrNT b,(ti Dli :h[$ A CItTR.;L S TRLLTUPA. (ABBOTT)

SOF T WARE
sWTwAPE IS CUPPUTIR FCRAM CE Ab : ITS AS CIATLL ATIA, L((LML TA7I(,
ANU UPEWATIUhAL PROCIDLPS. (SET)

SOFTWARE ANALYSIS
THE F' tLI'It.AY DESIG, ICR A SLF ikAPE SYSTEM (CAN 258)

SOFTWARE DATA ASE
A COM'ON DATA bASE IhTLRNAL TO Ali UPERATI(NAL SOFTWARE SYSTEP. (VAf 300) (2)
A DATABASE DEVOTEb TO COCUMENTS AND INFORPATIO% ABOUT SOFTWARE.

SOFTWARE DESIGN DEFINITION
(SOD) A U(:CUM NT CHIEFLY USEC It, DISPLAY THE RESULTS OF T71E ARCHITECTURAL
DESIGN STUDY ANK IMPLICATIONS OF COST, SCFHEDULE, AND WORk-8REAKDOWN
STRUCTURES 'O MA NAGEP.ENT OR CUSTOMERS. S(P,[HIGH-LEVEL TECHNICAL MATERIAL,
SUCH AS THAT NEEDEC TU ASSESS FROBLE' AREAS AND OTHER CONCERNS OR TO SHOW
HOW RELIRLP.ILNTS WILL LL 0ET, IS INCLUDED. (DAN 1153)

SOFTWARE DESIGN METHODOLOGY
A SYSTEMATIZEP PROCEDURE FOR CARRYING OUT THE (AERALL SOFTWARE DEVELOPYENT
PROCESS THRCUGH THE EFFECTIVE USE OF AN INTEGRAT[C COLLECTION OF TOOLS ANC
TECHNIQUES. (NASA)

SOFTWARE DEVELOPMENT CYCLE
SOFTWARE DEVELOPPENT CYCLE 1) REQUIREMENTS SPECIFICATION. TRANSLATION OF AN
OPERATIONAL (CR APPLICATION) REQUIREMENT INTO A STATLIENT GF THE FUNCTIONS
TO BE PERFORMED. 2) SYSTEM DESIGN. TRANSLATION CF THE REQUIREMENTS INTO A
DESCRIPTION OF ALL THE CO.PONENTS NECESSARY TO IMPLEVENT THE SYSTEP.. 3)
PROGRAMMING. PROOUCTION OF THE COVE WHICH WILL CONTROL THE SYSTEM AND
PERFORM ALL REQUIRED LOGIC ANC COMPUTATION. 4) CHECrOUT. VERIFICATION THAT
THE CODED AND OTHER COMPONENTS OF THE SYSTEM SATISFY THE ORIGINAL
REQUIREMENTS. (DAN 713) (2) THE SOFTWARE DEVELOPMENT CYCLE CONSIST OF FOUR
PHASES: DEFINITION, DESIC:N, IMPLEMENTATION AND EVALUATION. (DAN 141)

100

• , .so...

SOFTWARE DLVLLUPINT LIBRAkY
($LL) A ,1W,'tCT I%,TIAL V;,itL:TY -k f-I A~l 141 .AJ(.Nf VkA1_,1t ,[TN
ASU f Uk ,Pf AL1 4&~I 'j i Tk"P ?, bI, ~: M I(n; u
P AAUL1.i !s A14,~ L.TF'iL . (LAN 6 2 k l kttld SLUIII IA L I'
Pk ULMAV PO : N(. ct Li L L !~ If Pk/ 4

SOFTWARE OEVELOPMENT PROCESS
T k A ,1 L 0 k hA T ;'ki (L1 7 I5 I' I ppl 1 1 k (f. I LS [i% I f I W I 1 1 TA~ L

Rh.11![PlP ,.,$It)Pi' IN:u LLE :(N s; ft ! :'(-T hL .S, L.i Mi.!17 ? L ,i -
LuLL. ' LSTLD. tLut ,4IV, I U LI NlAtLY VI f 1. i I;.urI ,A S'A TS. Si
AL SO: Su; I f t :,! L (u I

SOFTWARE DOCUMENTATION
SOFIW ,kL VU(U E IT;' : TL 04-:wI[,., Lrh ;-I A Ii .01Tik '' I :N6 "AI N
PP I NTCU TS, I N HLPAN-IALAbL t I I'.I 1 (I 001 , T" TS li[IS I LN DE L TA I L S
Of THE SUIFTWAY , (,) IXPLA:1S T if CAI , LLI S (5(lilWt, ('k (1P %
PROVIDES v1YAT 1% ' kU NS 101, US NG Ti S(;, TO ,]U, 7 LSIkLL
RESULTS I ,OP' , kY;LtT k I.LIViL T. (SIT)

SOFTWARE ENGINEERING
501 TkARIEN(1E N 0,'E INI s 7i!! i iS(.4 ; Tu ;I:sI NAt1 14&AN (I kT II
AL(A.)RI TPMS, L. I tLLPI!G T 15T I 'TJL .(($5 ' ND ff IN TRADI (jI S, Afd[L
MANAGEI'ENT SCIELNCt Th DLF %L PLQU:, (LNTS .ASS1 R ; S VSS, (,VLRS I PEPSCANLL,.
AND MUN I TOR PRUGPFI SS I N TPl fI4SI fh, ULVELI('[ML f T ANL USI Of SO(TVARL.
SOFTWARE INLIfi L1 TLCHIILL S ARE I'IRL(T l TO .LDUCIN G HiIGH S (TWf PL COST
AND C CPLIy!TY WHIL I ICRE.SI G RLIAEILITY AN V M(;D1I lABiLITY. (2) S(FTWARE
ENGINELiING IS THAT BRACH OF SCIENCE Alit) TLC .(,LGY WHICt, DEALS WITH THL
LSIGIN, DEVLLUPMENT, AQD USE OF SOFWARI. SOFTWAPL ENG!NEERING IS A
CISCIPLINL LI LCTED AT THE PROUCTION Of COPPUTLR PROGRAMS TI.AT ARE C'RRECT,
EFFICIENT, ILLY bLL, 1-ATAINALLE, AND UNDERSTANDABLE IN REASONABLE TI M[
SPANS AT AC-LPTABLE COSTS. (SET) (3) THE PRACTICAL AND ME THODICAL
APPLICATION CF SCIENCE AND TLCHNOLUGY IN THE DLSIGN , ULEVLLCPELNT,
EVALUATION, AND MAINTENANCL Of COFPUTLR SOFTWARE OVER ITS LIII CYCLE. (NASA)

SOFTWARE ENGINEER{ING BLUEPRINTS
A PROGRAM DESIGN REPRESENTATION 6HICH PROVIDES AN "EASILY RLADABLL" AND
COMPREHENSIVE "LAYOUT" OF THE FUNCTIONAL ARCHITECTURE OF A SUfTWARL PRODUCT.
(DAN 271)

SOFTWARE ENGINEERING FACILITY
AN ORGANIZATION OP COMPANY WHOSE PRODUCT IS SOFTWARE DEVELOPMENT AND
PROLUCTION. (DAN 253)

SOFTWARE ENGINEERING MANAGEMENT
THE JUDICIOUS USE OF MEA 's TO EFFECT AND ADMINISTER THE ADVANCEMENT OR USAGE
OF INFORMATION SYSTEMS TECHNOLOGY. SOFTWARE ENGINeERING MANAGEMENT
RECOGNIZES NEEDS, SETS GOALS, PLANS MODES OF ACCOMPLISHMENT, DEVISES MEANS
FOR RESOURCE ALLOCATION, AND DIRECTS THE APPROACH TAKEN IN FUTURE
INFORMATION SYSTEMS APPLICATIONS AN) IN THE SOLUTION OF PROBLEMS ASSOCIATFD
WITH THESE APPLICATIONS. (DAN 1153)

SOFTWARE ENGINEERING PROJECT MANAGEMENT
SOFTWARE ENGINEERING PROJECT MANAGEMENT IS MANAGEMENT WHICH PROVIDES THE
NECESSARY PLANNING, ORGANIZATION, STAFFING, DIRECTION AND CONTROL FOR THE

101

ORDERLY DEVLLUPMENT uF A SOFTWARE ProJeCT. (CAN 230)

SOFTWARE ENGINEERING STANDARDS
A SET Of ENFORCeAELE GUIDELINES ANC/OR CUNSTRAINTS USED TO INSUre
CUNSISTENCY CURING THE DLVELoPMENT 1LRIOD, THEY MAY .PPLY TO SUCH ARIAS AS
NOMENCLATUkL, tAMING, LABELING, CODING, CoMPUTER USAGL, DOCur'ENTATION,
PROCEDURES, t TIStING. (DAN 300)

SOFTWARE ENGINEERING TOOLS AND TECHNIQUES
INDEXING TER. REFERS TO APPLICATION OF SUFt6ARe TOOLS AND DeVELOPMENTAL
TECHNIQUES IN A SOFTWARE ENGINEERING PROJECT AS AN INTEGRAL PART OF THE
DEVELOPMENTAL PROCESS.

SOFTWARE ERRORS
ANY DISCREPANCY BETWEEN A COmPUTED, ObSERVEL OR MEASURED QUANTITY AND ITS
TRUE, SPECIFIED, OR THEORETICALLY CORRECT VALUL. ERrOrS ARE INTRODUCED INTO
SOFTWARE BY HUMAN MISTAKES THAT IS: DEFICIENCIES OR MISINTERPRETATIONS OF
DESIGN CRITERIA, LOGICAL MISTAKES, SYNTATICAL MISTAKES MADE IN TRANSCrIBING
PROGRAM STATEPENTS INTO THE INPUT DATA. (CAN LD4)

SOFTWARE EXPERIENCE DATA
DATA RELATING TO THE DEVELOPMENT OR USE OF SOFTWARE WHICH COLLD BE USEFUL IN
DEVELGPINTG MODELS, RELIABILITY PREDICTIONS OR OTHER QUANTITATIV[
DESCRIPTION4S OF SOFTWARE.

SOFTWARE FACTORY
A COLLECTED SET OF TOOLS, METHODOLOGIES, AND A COMMON DATA BASE THAT PROVIDE
A PROCEDURAL APPROACH TO THE SUCCESSFUL CObPLETION OF SOFTWARE PROJECTS.
(DAN LD7)

SOFTWARE FAMILIES
A FLEXIBLE FAMILY OF SOFTWARE PACKAGES THAT CAN BE TARGETED TO VARIOUS
MACHINES AND THAT CAN BE REHOSTED. (DAN 3LI)

SOFTWARE LIBRARY MANAGEMENT SYSTEM
A CENTRAL COMPONENT OF ANY SOFTWARE DEVELOP ENT SYSTEM WHICH STORES SUCH
THINGS AS THE REQUIREMENTS FOR THE CCMPUTER SYSTEM, SOURCE MODULES, OBJLCT
MODULES, DOCUMENTATION, INPUT DATA, OUTPUT DATA AND CONFIGURATIONS AND THEIR
ATTENDANT CHANGE NOTICES. (DAN 366)

SOFTWARE LIFE CYCLE
THE SOFTWARE LIFE CYCLL IS THAT PERIOD OF TIME IN WHICH THE SOFTWARE IS
CONCEIVED, DEVELOPED, AND USED. (2) THE LIFE CYCLE IS NORMALLY DIVIDED INTO
THE SIX PHASES OF CONCEPTION, REQUIREMENTS DEFINITION, DESIGN,
IMPLEMENTATION, TEST, AND OPERATIONAL PHASES. THE CONCEPTUAL PHASE
ENCOMPASSES PROBLEM STATEMENT DEFINITION, PRELIMINARY SYSTEMS ANALYSIS, AND
THE IDENTIFICATION OF ALTERNATIVE SOLUTION CATEGORIES. THE REQUIREMENTS
DEFINITION PHASE CONSISTS OF PRODUCING A STATEMENT OF PROJECT OBJECTIVES,
SYSTEM FUNCTIONAL SPECIFICATIONS, AND DESIGN CONSTRAINTS. DURING THE DESIGN
PHASE THE SOFTWARE COMPONENT DEFINITIONS, INTERFACE, AND DATA DEFINITIONS
ARE GENERATED AND VERIFIED AGAINST THE REQUIREMENTS. THE IMPLEMENTATION
PHASE CONSISTS OF THE ACTUAL PROGRAM CODE GENERATION, UNIT TESTING OF THE
PROGRAMS, AND DOCUMENTING THE SYSTEM. DURING THE TEST PHASE, SYSTEM
INTEGRATION OF THE SOFTWARE COMPONENTS AND SYSTEM ACCEPTANCE TESTS ARE

102

PERFORMED AGAINST THE REQUIRLVENTS. THE OPERATIONAL PHASE INVOLVES THE SL
AND MAINTENANCE Of THE SYSTEM. THIS INCLUDES THE DETECTION AND CORRECTION ui
ERRCRS AND THE INCORPORATION OF MODIFICATIONS TO ADD CAPABILITIES AND/Op
IMPROVE PERFORMANCE... ALSO SEE - COMPUTER PROGRAM CERTIFICATION, COMPUTER
PROGRAM VALIDATION, COMPUTLR VERIFICATION, MAINTAINABLE TESTING,
PROGRAMMING, SOFTWARE DEVELOPNENT PROCESS. (SET)

SOFTWARE MONITOR
A COMPUTER PROGRAM THAT PROVIDES DLTAILLD STATISTICS ABOUT SYSTtk
PERFORMANCE. BECAUSE SOFTWARE MONITORS RESIDE IN MEMORY, THLY HAVE ACCESS T(
ALL THE TABLES THE SYSTEM MAINTAINS. THLREFORE, THEY CAN EASILY EXAMINE SUCH
THINGS AS CORE USAGE, QUEUE LENGTHS, INDIVIDUAL PROGRAM OPERATIU,, AND SO U,
TO HELP MEASURE PERFORMANCE. (DAN 134) COMPARE WITH SNAP GENLRATOR, S rAPS,
TRACE, TRACER PROGRAM.

SOFTWARE PHYSICS
FUNDAMENTAL DEFINiTION - ONE UNIT OF SOFTWARE WORK IS PERFORMED ON A STORAGE
MEDIUM WHEN ONE BYTE Of THAT MEDIUM IS ALTERED. THE ENEfGY OF A PROCESSOR IS
THE CAPACITY Of THAT PROCESSOR TO PERFORM COMPUTATION WORK. (TIES TOGETHER 3
CONCEPTS: SOFTWARE WORK, POWER, STORAGE REALIZATION) BY MEASURING, THE RATE
AT WHICH ENERGY IS CONVERTED TO WORK, WE DEFINE THE POWER OF A PROCESSOR. P
STORAGE REALIZATION IS THE PATTERN OF BITS OF MEMORY WHERE THEY hOLD THE
INSTRUCTIONS AND DATA OF A GIVEN PROGRAM. (DAN 231)

SOFTWARE PRODUCT
THE SOFTWARE COMPONENT Of A DELIVERABLE (TO A CUSTOMER) PRODUCT.

SOFTWARE RELIABILITY
SOFTWARE RELIABILITY IS THE PROBAUILITY THAT A GIVEN SOFTWARE PROGRAM WILL
OPERATE WITHOUT FAILURE FOR A SPECIFIED TIME IN A SPECIFIED ENVIRONMENT. (2)
SOFTWARE RELIABILITY IS DEFINED AS THE PROBABILITY THAT A GIVEN SOFTWARE
PROGRAM OPERATES FOR SOMETIME PERIOD, WITHOUT AN EXTERNAL SOFTWARE ERROR, ON
THE MACHINE FOR WHICH IT WAS DESIGNED GIVEN THAT IT IS USED WITHIN DESIGN
LIMITS. (DAN 31). (3) A. SYSTEM, USER, OR MACROSCCPIC VIEWPOINT: SOFTWARE
RELIABILITY IS THE PROBABILITY THAT THE USE OF THE SOFTWARE DOES NOT RESULT
IN FAILURE OF A SYSTEM BY MORE THAN A TOLERABLE FREQUENCY. IN SHORT,
SOFTWARE RELIABILITY IS THE PROBABILITY THAT THE SOFTWARE IS RELIABLE,
UTILIZING A DEFINITION OF "RELIABLE SOFTWARE." B. SUBSYSTEM, DEVELOPER, OR
MICROSCOPIC VIEWPOINT: SOFTWARE RELABILITY IS THE PROBABILITY THA' THE
PROGRAM, ROUTINE, OR "MODULE" IS FAULT-FREE... SEE ALSO - RELIABLE SOFTWARE.
(SET) (4) CODE POSSESSES THE CHARACTERISTIC RELIABILITY TO THE EXTENT THAT
IT CAN BE EXPECTED TO PERFORM ITS INTENDED FUNCTIONS IN A SATISFACTORY
MANNER. (DAN 239).

SOFTWARE RELIABILITY MEASURES
PROBABILITY MEASURES OF THE QUALITY WITH WHICH DESIGN REQUIREMENTS HAVE BEEN
TRANSFORMED INTO SCFTWARE PROGRAMS. A TYPICAL MEASURE IS THE MEAN TIME TO
FAILURE AS A FUNCTION OF OPERATING TIME. (DAN LD4)

SOFTWARE REQUIREMENTS DOCUMENT
(SRD) A DOCUMENT CHIEFLY GENERATED BY A CUSTOMER OR OTHER INITIATOR USED TO
DISPLAY THE NEEDS, JUSTIFICATION, AND ESTIMATED COSTS ASSOCIATED WITH THE
IMPLEMENTATION OF A DATA-PROCESSING CAPABILITY. SOME TECHNICAL MATERIAL,
SUCHAS THAT NEEDED IN SUPPORT OF THE JUSTIFICATION OR ESTABLISHMENT OF

103

NEEDS, IS INCLUELD. DETAILED TLCHNICAL kELUIPEMELITS NAY BE APPLNOED Or
INCLUDED IN THE FUNCTIONAL RLQUIRLMENTS DOCUMENT (erG) PORTION Of tHE SRu.
(DAN 1153)

SOFTWARE SCIENCE
A THEORY WHICH APPLIES THE SCIENTIF IC METHOD T) THf PROPLRTIES AND STRUCTUPL
OF COMPUTER PROGRAMS. IT PkOVIDES VRLCISI OBJLCTIVE MEASURES Of THE
COMPLEXITY Of EXISTING SOITWARL, PREDICTS IH[LENGTH OF PROGRAMS, AND
ESTIMATES THE AMOUNT Of TIME AN AVERAGE PROGRA.MMLR CAN BE EXPECTED TO USE TO
IMPLEMENT A GIVEN ALGORITHM. THE THEORY DOES THIS BY COUNTING OPERATORS AND
OPERANDS IN PROGRAMS. (DAN 231)

SOFTWARE SNEAK ANALYSIS
A FORMAL TECHNIQUE INVOLVING THE USE OF MATHEMATILAL GRAPH THEORY,
ELECTRICAL SNEAK THEORY, AND COMPUTERIZED SEARCH ALGORITHMS WHICH ARE
APPLIED TO A SOFTWARE PACKAGE TO IDNTIFY SOFTWARE SNEAKS. A SOFTWARE SNEAK
IS DEFINED AS A LOGIC CONTROL PiTH WHICH CAUSES AN UNWANTED OPERATION TO
OCCUR OR WHICH BYPASSES A DESIRED OPERATION WITHOUT REGARD TO FAILURE OF THE
HARDWARE SYSTEM TO RESPOND AS PROGRAMMED.(DAN 361)

SOFTWARE SNEAK CIRCUIT ANALYSIS
SNEAK CIRCUIT ANALYSIS (SCA) IS A TECHNIQUE BY W'HICH A PROGRAM LOGIC
STRUCTURE IS REDUCED TO A HARDkARL CIRCUITRY REPRESENTATION, AND THAT
CIRCUITRY IS EXAMINED FOR A PkEDEFINLD SET OF FAULTS. THESE FAULTS INCLUDE
OPEN-ENDED LOGIC, INFINITE LOOPS, BYPASS OF DESIRED LOGIC, UNNECESSARY
LOGIC, MISSING LOGIC, UNUSED LOGIC, INCORRECT ADDRESSING, AND PROCEDURAL
ERROR (E.G., UNINITIALIZ) VARIAELES.)... THE SCA IS A SPECIALIZE[FORM OF
PEER CODE REVIEW LOOKING fOR THE CLASSES Of ERRORS (AND ONLY THOSE ERRORS)
MENTIONED ABOVE. (SET)

SOFTWARE SPECIFICATION DOCUMENT
(SSD) THE PRINCIPAL PROGRAM DOCUMEITATION PROCUCED BY A DEVELOPMENT PROJECT,
CONSISTING OF "AS-EUILT" FUNCTIONAL (SFS), PROGRAMI-,ING (PS), AND TEST
SPECIFICATIONS. (DAN 1153)

SOFTWARE STANDARDIZATION
EFFORTS TO STANDARDIZE SOFTWARE PACKAGES SO AS TO MAXIVIZE COST
EFFECTIVENESS, MINIMIZE DEVELOPMENT TIME, AND INCREASE THE QUALITY OF
EMBEDDED COMPUTER SYSTEMS.

SOFTWARE SYSTEM DEPENDABILITY
THE PROBABILITY THAT THE APPLICATION PROGRAN TOGETHER WITH ITS SUPERVISORY
PROGRAM, DATA BASE AND HARDWARE WILL PERFORM IN ITS INTENDED ENVIRONMENT.
THE ENVIRONMENT WILL INCLUDE ANOMALIES AND FAILURES, SUCH AS: 1)
DEFICIENCIES IN REQUIREMENTS. 2) SOFTWARE DESIGN ERRORS (INCORRECT
ALGORITHMS, WORD LENGTH PROBLEMS , TIMING PROBLEMS, ETC.) 3) SOFTWARE
FAILURES 4) PROCESSOR ERRORS, 5) MEMORY ERRORS, 6) FAILURES IN THE
COMMUNICATION NETWORK 7) FAILURES IN PERIPHERIAL DEVICES, 8) OPERATOR
MISTAKES, 9) POWER FAILURES, 10) ENVIRONMENTAL FAILURES, 11) GRADUAL EROSION

OF THE DATA BASE, 12) HARDWARE SATURATION (CPU, MEMORY, I/O CHANNELS) (DAN
LD4)

SOFTWARE SYSTEMS
SEE SOFTWARE PRODUCT

104

SOFTWARE TESTING
THE PROCESS OF EXERCISING SOFTWARE IN AN ATTEMPT TO DETECT ERRORS WHICH
EXIST IN THE COVE. SOFTWARE TLSTING DUES NOT PROVE THAT A PROGPA v, IS
CORRECT. (DAN L04)

SOURCE LANGUAGE DEBUG
SOURCE LANGUAGE DEBUG (SLD) IS THE PRACTICE C- ULUGGING A PROGRAM, VIA iL
USER'S PROGRAMMING LANGUAGE AND VIA HUMAN-RLADABLL DATA VALUES. SLD MEANS
TAKING JUMPS WHERE IDENTIFIERS LAUEL THE CONTENTS, AND THE VALUES ARE
AUTOMATICALLY FORMATTLD ACCORDING TO A VARIABLE'S ATTRILUTLS. SLD MEANS
BEING ABLE TO TRACE THE CHANGING VALUES or ONE OR MORE VARIABLEIS, OR
MONITORING THE LOGIC fLPW Of THE PROGRAM, VIA EASILY USED SOURCE LEVEL DLEBUG
STATEMENTS. SLO MEANS DYNAMIC DEBUG ENABLING AND DISABLING; AND SUPERIMPOSED
OVER ALL OF THE ABOVE; THE ABILITY TO UPTIUNALLY SUPPRESS DEBUG SOURCE
STATEMENTS AT OR PRIOR TO COMPILATION WITHOUT HAVING TO MANUALLY REMOVI
THEM. THE MOST OBVIOUS ADVAN TAGE OF SLI) IS PROGRAMMER CONVENIFNCE. THE TASKS
OF READING AND INTERPRETING MACHINE-LANGUAGE MAPS AND DUMPS ARE BANISHE,
ALLOWING THE PROGRAMMER TO CONCENTRATE UN THE CLUES LEFT BEHIND BY HIS
PROGRAM'S ERROR. THIS CONVENIENCE IS FORMIDABLE. THE PROGRAMMER IS RELLIEVED
OF SEVERAL DIFFICULT RESPONSIBILITIES, EACH OF WHICH hAS A MAJOR LEARNING
CURVE ATTACHED TO IT: (1) LEARNING COMPUTER CHARACTERISTICS, SUCH AS THE
INSTRUCTION SET AND iLOATING-POINT WORD FORMAT IN BINARY OR HEX; (2)
LEARNING OPERATING SYSTL CHARACTERISTICS, SUCH AS HOW TO READ CRYPTIC
DUMP-RELATED MESSAGES; (3) LEARNING LOADER METHOOCLOGY, IN ORDER TG
UNDERSTAND THE COMPUTER'S MEMORY ALLOCATION; (4) LEARNING COMFILER
IDIUSYNCRACILS, SUCH AS THE KIND OF OBJECT CODE GENERATED; AND (5) LEARNING
JOB CONTROL LANGUAGE SEMANTICS IN ORDER TO SPECIFY NON-SLD TOOLS. ALTHOUGH A
PROJECT MUST PUSSISS THESE TALENTS AMONG ITS TEAM PARTICIPANTS, WITH SLD NOT
EVERY PROGRAMMER NEEDS ALL OF THESE TALENTS. ADLITIONALLY, VIA SLD Ttl
PROGRAM MER MAY PREPLAN HIS DEBUG ACTIVITIES AND PROVIDE FOR THEM DURING HIs
JOB EXECUTION RATHER THAN DURING DEBUG ITSELF. (SET)

SOURCE PROGRAM
A COMPUTER PROGRAM EXPRESSLU IN A PRGGRAMMING LANGUAGE. (NASA)

SOURCE STATEMENTS
ALL STATEMENTS READABLE BY AND READ BY THE C(OMPILLP. THIS INCLUD[S
EXECUTABLE STATEMENTS (E.G., ASSIGNMENT, IF GOTO,ETC.,), NONEXECUTABLL
STATEMENTS (DIFENSION, REAL, ENDO, AND COMMENTS. (SEL) (2) (ISO) IN A
PROGRAMMING LANGUAGE, A MEANINGFUL EXPRESSION THAT MAY DESCRIBE OR SPECIFY
OPERATIONS AND IS CuMPLETE IN THE CONTEXT Of THiS PROGRAMMING LANGUAGE.
(ANSI-X3) (3) IN COMPUTER PROGRAMMING, A SYMLOL STRING OR OTHER ARRANGEMENT
OF SYMBOLS. (ANSI-X3) (4) PROGRAMMING LANGUAGf AT THE SOURCE CODE LEVEL.
(DAN 21)

SOURCE UNIT END DATE
THE DATE OF THE LAST UPDATE MADE TO A UNIT CF SOURCE CODE. (DAN 137)

SOURCE UNIT START DATA
THE DATE A UNIT OF SOURCE CODE WAS ENTERED INTO THE PROGRAM SUPPORT LIBRARY.
(DAN 137)

SPARCS-2
SIMULATION PROGRAM FOR ASSESSING THL RELIABILITIES OF COMPLEX SYSTEMS

105

DEVELOPED AT OKLAHOMA STATE UNIVERSITY UNDLR AIR FORCE LONTRACCI #
F33615-74-C-4072 AND RLWORKED UNDER F 33615-76-C-3094.

SPECIFICATION LANGUAGE
A LANGUAGE USED TO SPECIFY. SPECIFICATION LANGUAGES CAN BE USED TO SPECIFY
DESIGNS, PROGRAMS, ETC.

SPECIFICATION OMISSION ERROR
AN ERROR FOR A UNIT OF SOURCE CODE ASSOCIATED .ITH A PROGRAM DUE TO
OMISSIONS IN THE PROGRAM SPECIFICATIONS. (DAN 137)

SPECIFICATION TOOLS AND TECHNIQUES
METHODS WHICH ASSIST IN CONSTRUCTION OF FORMAL SPECIFICATIONS. THESE METHODS
CAN INCLUDE PROOF OF CORRECTNESS, USE Of A FIXED LANGUAGE, OR FIXED
DISCIPLINES (DATA FLOW GRAPHS, V-GRAPHS), OR STATE MACHINES. (DAN 532)

SPECIFICATIONS
A DESCRIPTION OF THE INPUT, OUTPUT AND ESSENTIAL FUNCTION(S) TO BE PERFORVED
BY A SYSTEM OR BY A COMPONENT OF THE SYSTEM. THE SPECIFICATION IS PRODUCED
BY THE ORGANIZATION THAT IS TO DEVELOP THE SYSTEM; I.E. AT THE TOP LEVEL IT
CAN BE THOUGHT OF AS THE CONTRACTOR'S INTERPRETATION OF TVE REQUIREMENTS.
VERY PRECISE SPECIFICATION - A COMPLETELY DLFINED DESCRIPTION OF THE INPUT,
OUTPUT, AND FUNCTION OF A COMPONENT. THE IMPLLMENTOR OF A VERY PRECISE
SPECIFICATION NEEDS TO MAKE FEW, IF ANY ASSUMPTIONS. IT IS ALMOST ImPOSSIBLE
TO ARRIVE AT AN AMBIGUOUS INTERPRETATION OR MISUNDERSTANDING Of THE
SPECIFICATICNS. PRECISE SPECIFICATION - THE INPUT, OUTPUT, AND FUNCTION OF
THE COMPONENT ARE WELL DEFINED. THERE ARE UNDERLYING ASSUMPTIONS NOT
SPECIFIED. LOT IT IS ASSUMED THAT ANY PROGRAMM.ER WORKING ON THE PROJECT,
WITH EXPERIENCE ON A SIMILAR PROJECT, WILL UNDERSTAND THESE ASSUMPTIONS. IT
IS POSSIBLE TO ARRIVE AT AN AMBIGUOUS INTERPRETATION OR MISUNDERSTANDING CF
THE SPECIFICATIONS IF THE READER DOES NOT HAVE ENOUGH EXPERIENCE WITH THE
PROBLEM OR DOES NOT OBTAIN FURTHER VERBAL COMMUNICATION. IMPRECISE
SPECIFICATION - THE INPUT, OUTPUT, AND FUNCTION OF THE COMPONENT ARE LOOSELY
DEFINED. MUCH OF WHAT IS REQUIRED IS ASSUMED RATHER THAN SPECIFIED. THE
SPECIFICATION RELIES HEAVILY ON PROGRAMMER EXPERIENCE AND VERBAL
COMMUNICATIUN IN ORDER TO GET AN UNAMBIGUOUS INTERPRETATION AND FULL
UNDERSTANDING OF WHAT IS NEEDED. (SEL) SEE ALSO: FORMAL SPECIfICATIONS,
ENGLISH (OR INFORMAL) SPECIFICATIONS FUNCTIONAL SPECIFICATIONS, PROCEDURAL
SPECIFICATIONS. (2) THE TECHNICAL DEFINITION OF THE SYSTEM AND ITS PARTS.
(DAN LD7)

SPECIFICATIONS DECOMPOSITION
DECOMPOSITION IN THIS INSTANCE REFERS TO BREAKING UP OF THE SPECIFICATIONS,
ON BOTH A HORIZONTAL AND VERTICAL BASIS, TO DETERMINE ALL OF THE FUNCTIONS
AND PROCESSES INVOLVED AND THEIR INTERRELATIONSHIPS.

SPECIFICATIONS DRIVEN
USING THE SPECIFICATIONS OF THE PROGRAM TO DLTLRMINE TEST DATA (E.G., TEST
DATA IS GENERATED BY EXAMINING THL INPUT/OUTPUT REQUIREMENTS AND
SPECIFICATIONS.). (SEL)

SPECIFICATIONS VERIFICATION
SPECIFICATIONS VERIFICATION IS THE PROCESS OF DETERMINING WHETHER OR NOT THE
DESIGN SPECIFICATION FOR THE INDIVIDUAL COMPUTER PROGRAM MODULES REPRESENTS

106

I

I
A CLEAR, CONSISTENT, AND ACCURATE TRANSLATION OF THE COMPUTER PROGRAM
REQUIREMENTS. SPECIFICATION VERIFICATION DOES NOT SLLK TO REDESIGN, BUT
RATHER TO IDLNTIIY INADEQUACIES. SEE ALSO - COMPUTER PROGRA, VERIFICATION

SPECIFIED PERFORMANCE REQUIREMENTS
A WRITTEN REQUIREMENT, FIGURE OF MERII, OR PARAMETER WHICH QUALITATIVELY OR
QUANTATITIVELY DEFINES SYSTEM PERFORMANCE. (DAN 31)

SREP
THE BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER IS SPONSORING AN
INTEGRATED SOFTWARE DEVELOPMENT RESEARCH PROGRAM TO IMPROVE THE TECHNIQUES
FOR DEVELOPING CORRECT, RELIABLE BMD SOFTWARE. THE SREP IS BEING DEVELOPED
AS A PART OF THIS PROGRAM BY TRW DEFENSE AND SPACE SYSTEMS GROUP TO EXAMINE
AND IMPROVE THE QUALITY OF REQUIREMENTS. (DAN 423)

STABILITY
STABILITY IS THE MEASURE OF LACK OF PERCEIVABLE CHANGE IN A SYSTEM, AT A
GIVEN LEVEL OF THAT SYSTEM, IN SPITE OF SOME OCCURRENCE IN THE SYSTEM
ENVIRONMENT WHICH WOULD NORMALLY BE EXPECTED TO CAUSE CHANGE. (DAN 781)

STACK
A DATA STRUCTURE THAT, TOGETHER WITH ITS ACCESS FUNCTIONS, MODELS OPERATIONS
USED IN LAST-IN FIRST-OUT (LIFO) ALGORITHMS.

STANDARDIZATION
THE DEVELOPMENT OF CRITERIA FOR SOFTWARE TO MAXIMIZE RELIABILITY AND
ESPECIALLY TRANSPORTABILITY.

STANDARDS
ANY SPECIFICATIONS THAT REFER 0U THE METHOD OF DEVELOPMENT OF THE SOURCE
PROGRAM ITSELF, AND NOT TO THE PROBLEM TO BE IMPLEMENTED (E.G., USING
STRUCTURED CODE, AT MOST 100 LINE SUBROUTINES, ALL NAMES PREFIXED WITH
SUBSYSTEM NAME, ETC.). (SEL) (2) PROCEDURES, RULES, AND CONVENTIONS USED FOR
PRESCRIBING DISCIPLINED PROGRAM DESIGN (PROGRAM STRUCTURING, AND DATA
STRUCTURING) AND IMPLEMENTATION. ARCHITECTURE AND PARTITIONING RULES,
DOCUMENTATION CONVENTIONS, CONFIGURATION AND DATA MANAGEMENT PROCEDURES,
ETC. ARE AMONG THOSE STANDARDS TO BE DISSEMINATED. (3) A DESIGN CRITERION.
AN ENTITY CONFORMS TO A STANDARD IF THE ATTRIBUTE(S) DEFINED BY THE STANDARD
APPLY TO THE ENTITY. (ABBOTT) (4) CONVENTIONS, GROUND RULES, GUIDELINES,
PROCEDURES, AND SOFTWARE TOOLS EMPLOYED DURING THE SOFTWARE DEVELOPMENT
PROCESS TO BENEFIT SOFTWARE DESIGN QUALITY, CODING QUALITY, SOFTWARE
RELIABILITY, VIABILITY AND MAINTAINABILITY. (DAN 1201)

STANDARDS ENFORCER
A COMPUTER PROGRAM USED TO AUTOMATICALLY DETERMINE WHETHER PRESCRIBED
PROGRAMMING STANDARDS AND PRACTICES HAVE BEEN ADHERED TO. THE PROGRAM CAN
CHECK FOR VIOLATIONS TO STANDARDS SET FOR SUCH CONVENTIONS AS PROGRAM SIZE,
COMMENTARY, STRUCTURE, ETC. (DAN 134)

START DATE
DATE INITIAL WORK ON PROJECT BEGAN. (SEL)

STATE DIAGRAM
A DEVICE USED TO DESCRIBE THE PROCESSING LOGIC IN TERMS OF STATES. A STATE

107

CAN UE DEFINED AS A POINT OF EQUILIRIU , WHERE PROCESSING REMAINS DORMANT
UNTIL AN EVENT OCCURS. (DAN 270)

STATE MACHINES
A MATHEMATICAL FRAM:EWORK IOR DEFINING PRECISE SPECIFICATIONS OF COMPLEX
SOFTWARE SYSTEMS.

STATEMENT
A UNIT OF A COMPUTER PROGRAM CONSISTING O A MEANINGfUL ARRANGEMLNT OF EASIC
LANGUAGE ELEMENTS WHICH EXPRESSES A UNItILL INSTPUCTION OR IT;FORMATIOIN,
ANALOGOUS TO A SENTENCE IN ENGLISH. (NASA) (2) THE ACT OR PROCESS OF STATING
OR PRESENTING A SINGLE DECLARATION OR REMARK. (ANSI-X3HI)

STATIC ANALYSIS
STATIC ANALYSIS IS THE ANALYSIS Of A PROGRAN WITHOUT EXLCUTING THE PROGRA,.
SPECIFIC METHODOLOGIES INCLUDE DLSK C HECKING, PLLR CODE REVIEW, ANV
STRUCTURAL ANALYSIS.

STATIC REDUNDANCY
DUPLICATION OF PART OR ALL Of THI LUvPU.Uf.TS (L.G. PROCESSOR, MAIN AND
AUXILIARY MEMORIES, AND COMMUNICATIONS LQUIPMLNT) So THAT IN THE CASE OF
FAILURE BY ONE UNIT ANOTHER CAN BE SWITCHED IN. (DAN 311)

STATISTICAL PREDICTION
THE COMPUTATION OF A CONFIDENCE FACTOR TkAT INDICATES THE EFFECTIVENESS OF
THE PROGRAMMING AND VERIFICATION PROCESS BY INSERTING ERRORS INTO THE
SOFTWARE SYSTEM. (DAN 154)

STATISTICAL TEST MODELS
A MODEL WHICH RELATES DIFFERENT PROGRAM ERRORS TO THE IiiPUT DATA SET (OP
SETS) WHICH EXCITE AND THUS DISPLAY A PARTICULAR ERROR. THE MODEL ALSO GIVES
THE PROBABILITY THAT THESE ERRORS WILL CAUSE THE PROGRAM TO FAIL. (DAN 232)

STEPWISE REFINEMENT
STEP-WISE REFINEMENT IS THE PROCESS WHEREBY STEPS ARL TAKEN IN THE FOLLOWING
ORDER: (1) THE TOTAL CONCEPT IS FORMULATEG, (2) THE FUNCTIONAL SPECIFICATION
IS DESIGNED, (3) THE FUNCTIONAL SPECIFICATION IS REFINED AT EACH
INTERMEDIATE STEP WHERE THE INTERMEDIATE STEPS INCLUDE CODE OR PROCESSES
REQUIRED BY THE PREVIOUS STEP, AND (4) FINAL REFINEMENTS ARE MADE TO
COMPLETELY DEFINE THE PROBLEN. (SET) (2) THE PROCESS OF DEFINING DATA IN
MORE AND MORE DETAIL AS THE NEED ARISES DURING THE PROGRAMMING PROCESS. (DAN
136) (3) THE DEFINING OF MORE GENERAL OPERATIONS IN TERMS OF MORE SPECIFIC,
LOWER LEVEL OPERATIONS. THE DESIGN OF A PROGRAMMING SYSTEM THROUGH STEPWISE
REFINEMENT IS CALLED TOP DOWN DESIGN. (ABBOTT)

STESD
A TOOL BEING DEVELOPED BY THE UNIVERSITY OF TEXAS AT AUSTIN WHICH; A)
PROVIDES FOR DIRECT AND SYMBOLIC EXECUTION OF SPECIFICATIONS AS It THEY WERE
PROGRAMS, F) PROVIDES FOR PERFORMANCE AND COST ESTIMATES ON THE BASIS Of
VARIOUS METHODS FOR SIMULATION AND CALCULATION AND C) PROVIDES FOR HEURISTIC
JUDGEMENTS OF THE WAY IN WHICH THE DESIGN WHOLE IS DECOMPOSED INTO PARTS.
(CAN 333)

STRENGTH

108

-4

I
SEE COHESION

STRING PROCESSING
THIS INCLUCES COMPONENTS WHICH PERFORM OPERATIONS ON LISTS 01 CHARACTES.
NORMALLY, WE THINK OF THIS CLASS 10 INCLUDE FUNCTIONS OF COMPILERS, hASH
CODE STRING HOOK-UP AND ARRAY COMPARISONS. (SLL)

STRIPED MODULE

A NAMED MODULE IN THE PROGRAM PROCEDURAL DESIGN, SO CALLED BECAUSE Of THE
METHOD USED TO DENOTE SUCH MODULES ON A FL06CHART. STRIPING Of A FLOWCHART
SYMBOL SIGNIFIES THAT A DETAILED REPRESENTATION IS EITHER LCCATED ELSEH[Epl
IN THE SAME SET OF FLOWCHARTS (HORIZONTAL STRIPING), OR ELSE AT A REFERENCED
LOCATION (VERTICAL STRIPING). (CAN 1153)

STRONG TYPING
A SOFTWARE DESIGN AND CODING CRITERION. A SYSTEM CONFORMS TU THE CRITIRIU N
OF STRONG TYPING TO THE EXTENT THAT DIFFERENT DATA TYPES ARE CEV[LOPI, ANb
USED FOR SEPARATE SORTS OF DATA OBJECTS. A SYSTEM FAILS TO CONFORM To THf
CRITERION OF STRONG TYPING TU THE EXTENT THAT ONE DATA TYPE IS USED ON THE
SAME LEVEL OF ABSTRACTION TO ENCODE THE VALUES OF DATA uBJECTS OF I"
DIFFERENT DATA TYPE. (SEE ENCODING) EXAMPLE: AN OBJECT OF THE DATA TYPE
BOOLEAN HAS THE POSSIBLE VALUES TRUE AND FALSE. THESE VALUES MAY 1, LNC('DE
AS THE INTEGER VALUES I AND 0. TO THE EXTENT THAT ENCODING IS USED ON THE
SAME LEVEL OF OBSTRUCTION IN PLACE OF THE VALUES TRUE AND FALSE, THE SYSTEM
IS NOT IN CONFORMANCE TO THE CRITERION OF STRONG TYPING. TO THE EXTENT THAT
TRUE AND FALSE, USED ON ONE LEVEL OF ABSTRACTION, ARE IMPLLMENTLD, ON A
LOWER LEVEL OF ABSTRACTION, AS INTEGER VALUES I AND 0, THE SYSTEM IS IN
CONFORMANCE TO THE CRITERION OF STRONG TYPING. (ABBOTT)

STRUCT
AN ALGORITHM FOR AUDITING PROGRAMS FOR COKPLIANCE 1,ITH A SIRUC.TURELI
PROGRAMMING STANDARD. (DAN 260)

STRUCTURAL COMPLEXITY
A MEASURE OF THE DEGREE OF SIMPLICITY OF RELATIONSHIPS BETWEEN SUBSYSTEMS.
(DAN 781) (2) SEE ALSO COMPLEXITY, LOGICAL COMPLLXITY. (3) SYNONOMOUS WITH
MODULARITY (4) THE DEGREE OF COUPLING AM-ONG MODULES OF A COMPUTER
PROGRAM. (NASA)

STRUCTURAL INTEGRATION
THE COMBINATION OF RELATED HARDWARE, IRRESPECTIVE OF FUNCTIONAL APPLICATIONS
INTO A SYSTEM ARCHITECTURE WHICH PROVIDES COST OF PERFORMANCE BENEFITS.
(NASA)

STRUCTURAL MODEL
MODEL THAT DEPICTS FUNCTIONAL RELATIONSHIPS AMONG ACTIVITIES AND/Ok
PROCESSES STRUCTURALLY, WHETHER GRAPHICAL OR OTHERWISE. (DAN 255)

STRUCTURE
MAY PERTAIN TO THE KANNER OR FORM IN WHICH SOMETHING IS CONSTRUCTED OR MAY
REFER TO THE ACTUAL SYSTEM AS CONSTRUCTED. DESCRIPTIONS OF STRUCTURE FOCUS
AN INTERRELATION OF THE VARIOUS PARTS AS DOMINATED BY THE GENERAL CHARACTER
OR FUNCTION OF TIlE WHOLE. DESIGNING STRUCTURE IS A PROCESS OF IDENTIFYING,
ANALYZING, AND SELECTING AMONG ALTERNATIVES WITHIN DESIGN CATEGORIES. (DAN

109

I,,

1153)

STRUCTURE CHARTS
A GRAPHICAL TECHNI(QUE WHICH ILLUSTRAT|1 THE RELATIONSHIPS BETWL[N THE
COMPONENTS OF A SOFTWARE SYSTLE.

STRUCTURE DRIVEN
USING THE STRUCTURE Of THE PkOGkAM TO DLILEMINL TEST DATA (E.G. GwhPATiN ,
DATA TO ENSURE THAT EACH BRANCH OF A ;RL(AAM IS [XuT1[[AT LEAST ONCt.)
(SEL)

STRUCTURE FLAG
A FLAC INTRODUCED INTO AN OTHERWISE UNSTRUCTUEI[PROGRM TLI k Pkt.T
STRUCTURED CONTROL FLOW. (DAN 1153)

STRUCTURE GRAPH
A GRAPHICAL REPRESENTATION SHOWING TI:l CONTROL CONL1EC1hS ELTWtEh %A,(
MODULES. THE "TOP" NODE OF THE GRAPH REPRES[NTS THE TOP-LIVEL MAIN PROGRAM
PROCEDURE; LINES FROM THE TOP RODE TO CTI lk HLOES SILNIFY TrAT Ttila
CORRESPONDING NAMED MOUbLLS APPEAR AS INVOCATIONS IN THE ITP-LEVEL PROUGRAV
PROCEDURE, ETC. (DAN 1153)

STRUCTURE OF DATA
THE ORGANIZATION OF A COMPOSITE DATA ITEM CONSISTING O SEVERAL VARIABLES CR
OTHER ARRAY ITEMS. EXAMPLES OF SUCH COPPOSITE DATA ITEMS ARE ARkAYS (COTH
SINGLY AND MULTIPLY DIMENSIONED), STRINGS, CUWPLIX, VARIABLES %ND CONSTANTS,
RECORDS ON A DISK FILE (EACH RECORD CONTAINIKNG SEVERAL WOR0S), ILTIPLl-W('Rv
ENTRIES IN A TABLE, ETC. (SEL)

STRUCTURED CODE
THE LANGUAGE SUPPORTk STRUCTURED CONIRCL STRICTURES (E.G.. A FORIRAN
PREPROCESSOR). (SEL) (2) A DESIGN AND COING CRITLRICN. A PROJAY SATISFIES
THE CRITERION OF STRUCTURED CODE If ITS OPERATIONS ARE (RGANIZ(O AS A
CONTROL SEGMENTS: IF THE ORDER IN, WHICH ITS OPERATIONS ARE PERIORMID IS
DETERMINED BY CONTROL STRUCTURES AND NOT JUST CCI4TROL STATIIV.ENTS. (APPOTT)

STRUCTURED DESIGN
STRUCTURED DESIGN IS A SET Of TECHNIQ UES FOR REDUCING IlE COfPLLXITY Of
LARGE NEW PROGRAMS BY DIVIDING THEM INTO INDEPENDENT WODULES. WOR:ING WITH
SEPARATE PIECES PERMITS THE PROGRAMMER TO CODE, DEPLt, TEST, AND PovIlY A
FUNCTIONAL MODULE WITH MINIMAL EFFECT ON OTHER MODULES CF THE NTIRE SYSTEM.
CONCENTRATING EFFORT IN THIS WAY ENHANCES EFFICIENCY AND QUALITY AND REDUCES
BUGS. MOREOVER, TO THE EXTENT THAT THE INDEPINDENT MODULES ARE PORTABLE,
FURTHER SYSTEMS CAN BE DEVELOPED WITH LESS NEE FOR NEW (CODE. (IAN 227)

STRUCTURED NARRATIVE
THE PROCEOURE OF WRITING A DESIGN SPECIFICATION AS A S[UI STEPS iPLAINING
THE OPERATION OF THE PROGRAM. EACH STEP USES A 1(OMAL C.)NS7RUCT hITH DATA
PERTINENT TO THE PROGRAM. (DAN 1201)

STRUCTURED PROGRAM
A PROGRAM CONSTRUCTED OF A PASIC SET OF CONTROL LOGIC FICURES WHICH PROVIDE
AT LEAST THE FOLLOWING: SEQUENCE Of TWO OPERATIONS, CONDITIONAL bRANCH TO
ONE OF TWO OPERATIONS AND RETURN AN[REPETITI(h Of AN OPERATION. A

110

I

$THUL fUkLOb PkuloPN 0- 1 L %i VP I Aht 3dl I 1 1 1%. o At'~ 1-1 111
PATh6 ~1 LL i S: T I M. 04 1 iA(tt A I I c*' It N I i f
(UAN 141j)

A LUMPT&PW'A0 I''M J.~ 4 ~~-t ~ ~ (L

STRUCTURED PR~OGRAMM~ING

P k URSAM I A L L) V UN0 14 1 -, Nt * ,;i 4 A d !k It4i)) t- hi fU IS (A 1: ' :
11 TkL TLRE S AI W cIIt i!: it -s, I. 'Iil %-f . i . tL . * '-%l 'Si ~I! L %(
(J THI R UP RLL TcrS A~t SLIP'! :Ytt' a A&I 'H R(,'i i (HtA ?hi (161 ' I- ' I 1

AhVCAS .I (UVLt 1H I t'' , NZ *, "-4 1 " I I % I IM~ 1A : "'I

M ti 01AMULE *~ t~ikPA 11 ,'T "?,1t'7 : VL ofi S" V,2 1 (, % 1.1.1
bELLARAI OP&N)U R t 1vA:~ t ul W[A I Its- A'16 i i. I. Al; I- 1 :1 -,

ThtUHRLP THAT 11h ;'pu4~5.&p;4 06: '1 01 Itd 4h Ii I A 0,4 ?k I~~h' 1
UhL Y TH(RI I CUNTIRUI S TR'st!L& S: Sl. !tJ (* ; ~ h - 'f*-1 T'
ANAL OU1, 5 r 701 1~ IOPK~! AI p~''i, 9. : " ;*

NU1.8L R OFI LJ~ (11 *' 5 r- P IJ P 1 10 1 1

T~tj 51 TE~t%(.F S F CLL4va. I) I- LA * (:0 14 '.i i 'f-
PRVOCRJAP !)ICtV T1) 51P 1 'i ,CVW(;'k3:V, ;-I o' 0" 1, .

FUORR. .)LANC;VA(.L I V-h t F $' f7 i i . I I>
I HI$-RD L R L ANGUAE W L~:L~ IP ! L E R 5 1 I-F 1

STRLC TRED PRIAPPNG. ~1G.A
MAERV 11Ec[Ah:ZA ICS P I S1AL I*2 Ai. : ~
PR(UAP USIV TV A~-IA!'rAltt :!4 V P I(;;i;j,
REAVA8IUTY. 4) Pkr .lcl:s' 5 IJ~i.j* FP ,, '; ;t
USLI) T(RLhCRU AhV S"CoPI iCkI '(~&A U!

CERTAIN iPRAC TICE SIf A 1 % S7 V:1 ,% f II1i j ,
LF VILS _P !-Is OF o ~IVL :W. V .'.4 %Ay!~ s.t i .jvf :itV k !

140) (5) A PRV(.i AjNf V rISC :ps ;% t' f : r I. ; ~ I ~ij P1 't I.
DESIGN TIAT ENSURES A "t SALIL ,', It , Voi 4K I yl IkA , 1. 7 ' :1I V iJ

EVOKE[S SIPPLE AhltI 4LL 4I(I 1 1 Ci Itif(7 W %S H '41 % f~ (, P fl, 14 I fS. "hI
PRCIGRAPPIF4G DISC IPLINE USES TVs! P1 U All -iC ;(V' " f~ o' Yel lif P(I
BASKC CONTRUL 5 tATERINT5 'C F FV R)i 4 lo (~ V, 7 Hr. ps I* P1 1V
LAR(A ANC COP'PLIX PRAbvi'S. 'fi Pi~f((S CF (Pf0V'dI 76-1 '4(PY t V' I II'

I%(LbU[S: PAING LCCAL (W TA(!(AL iUPR'C P'(ftf 1 S)Y, lM :; I.,I ,%

I'OU L: kRITING PR(GPIlW SlG ?4T S P P[f 1,' I[(5:Y .?

(DAN L137) (6)S T? PC l, f I FRC i A.4". !0 S'p IC Ti 14+ 1 1 1. 1' (,h
ORGANIZATION DIS(IF'IINU 114AN A ~CJC TlICN,'Ll, 1< 71 (A% PI ~I-
SICNIF KCANTLV LIANCE P'(%T I F E Tlf VA CLAFLI U-[6, 7 1 (S1, 11
BASICAL LY A S[T Of STA?4'ARC5 F OR IG l !(,Tli ((%TP-f I TPJTI((I'P o' s
OF C(MPUTEP PRKRAPVS. ([AN177)

STRUCTUR[L PROGRADMIlG LANGUAG

111

A LANL~* t, PA. C" I~ NL i. I V > .'i .% t'~

',1TRuLMUNk O P~Pr~ :'
k,.a.~L .,.~ t * ~ ' Y ;~~

%TRU UK- ^At - tHRU Gil'

AV R A Y Al. 'f P. f, - . '

STU'B
i~~t a "M NA i%

L .: .I F I' t f0 TIA

f 'PA f Y MIN

LPU TIME, OC(UPY11t Ml'()P +.t2. K'2,MtiY Ly1L

SUBKARINE APPLICATION
INDEXINGi TEP.. rlfP i Ts 10 A%-,Ai[L~ A A y !':, tjAfj pT
THE USE Of* S T64A" . ',,0 (0 ' iU PL u~ U LMAkPI ~

SUBMODULE
A MODCLE AF1~' o~ A MODLAi (,P :1011ti& LY A T(iiL[% ' A fI C, A(i
THE PROCEDURE APPEAPtRN 167: (,P 41 1 I 0 !VtL %.~L*K
SYMBOL. (DAt Ilt,3)

SUBPROGRAM

IS USLALL0 A ftdAGP?, CHAth b 4A K li :
BY A CAL I SIAT ', NT . ALSt, Si! - SLL i IX ;AtA L Ib ul kI

ELEMENTS WH ICH TUU1. !flA i, ip(l fx C N. p. i 1 t"' "' :%ll i i
FUNCTIONS .ITH TL~ fii Init~l f. f id;' i~ r', /. 1.~

SUBROUT INE
A S U bR UUT :NE LIS A 1.± u;-1 7 . .L ;, AK AI

ITS NPE AM X :~. t ~I~::: *~~i ;x~ ~~
SUBRUUT TM %L :Nsit ~ ~:'.-t :%i
SubU~LI T~. CAN %.L c I" L L ,

CALLING ihUINL mwu AP~y k ':
SUBPROG~RAM (SLT)

SUBSYSTEM

th I CH I S C CIO'PS L NE ! %1; ')p !- :.:.
TOP UNIT of A TRUIE S!Pu P. bN : '>
6HICH TOGETIoER i~vo P. oV I ~ b: ro:, f
SUBSYSTE.M. (LAN : 2

SUPERVISORY PROGRAM
(ISO) A C'P U TL R PP LGkA, Ls LLY PAP ;x 11 T ~ j

THE EXECUT ION (OF OTHER CoMPlT ELk P L~y *N I t
DATA PROCESSING SYSTLPI. S.&'MC Y:t~ <:.i
(ANSI-X3)

SUPPORT SOFTWARE
ALL PROGRAMS USED I N THE DE Vi L PFML T AN C,' . fAN O i
OPEPATIONAL PROGRAMS A Nf' T LS T/ 11A '.% [NA NC f- GA?~ IL PC GP (~A
INCLUDE, BUT ARE N 6T LIPITED TO: A) (JOMPILLRS, ASI'BI k ,
BUILDERS, AND LOACERS PRUIPLEC TU GENERATE MA (fHIM %f (&t k N [CL %- kI 7(+
SUBPROCRAtiS OR COkPONENTS 11%TO A CUMPLETE (flvPUTLP EH(RA) LE -UOIb
PROGRAMS C) STIMULATION AND SIMULATION PPCGRAY.S USEP ',I% !PLEFAT+± p IP%IG
SITES, U) DATA AbSTRACT ION AND1 REDUCT ION PPOGIRA S APPL, I(ABLE 7h (4 [kbT : UNAL
PROGRAMS. E) TEST PROGRAPOS USED' IN DEVELOPPENT 0 OELRAI 1NAL ('GRAMS .
PROGRAM~S USEC FOR MANAGEMENT CONTROL, CONF IGUPAT Iut MANAGL?'ENT (: t-o(UP1EN
GENERATION AND CONTROL DURING DLVLUPF .ET. (CAN 3F4) (2) A COMPUTER FPt-GAl
WHICH FACILITATES THE DESIGN, DEVELOPPENT, TESTING, ANALYSIS, EVALUATION, (lR
OPERATION OF OTHER CO-*.PUTER PROGRAMS.(NASA) (3) SOFTW~AR[TOOLS USE[BY
PROJECT PERSONNEL FOP SOFTWARE DESIG.N, DEBUGGING, TESTING, VERIf-ICATIoNr, AND
MANAGEVENT. (DAN 1201)

I '

SUPPORT TOOLS
THE SET OF SUfTkARE TOOLS AND PVOCLDURLS USED AS AIDS IN S6FTWARL
DLVELOPMENT. (CAN 1201)

SUSTAINING ENGINEERING
SOFTWARL-RLLATEV ALTIVITILS IN THE POST-ULLIVIPY PLRIOD, PRINCIPALLY
SUPPORTIVE IN FORM, WHICH KEEP THAT S0FTWARL OPERATIONAL WITHIN ITS
FUNCTIONAL SPECIFICATIONS; E.G., REPAIRING lAULTS, CORRECTING DOCUMENTATION,
REMOVING LIENS, ANU ESTIMATING COSTS AND OTHER RLSOURCES REQUIRED FUR SUCH
TASKS. THE HOLDING OR KLEPING OF SOFTWARL IN A STATE OF EFFICIENCY OR
VALIDITY DESPITE INTERLfACE FLLCTUATIONS IN SYSTEm, SUBSYSTEM, GR
APPLICATIONS CAPABILITIES. (DAN 1153)

SYMBOLIC EXECUTION
"INSTEAD OF EXECUTING A PROGRAM ON A SIT Of SAMPLE INPUTS, A PROGRAM IS
SYMBOLICALLY EXECUTED FOR A SET OF CLASSES OF INPUTS LEADING TO SYMEOLIC
VALUES WHICH DESCRIBE THE RELATION PETWELE, INPUT AND OUTPUT." (bAN 281)

SYMBOLIC MACHINE LANGUAGE
MACHINE LEVEL LANGUAGE UT ILIZING SYMBOLS AND/OR PNEMONICS TO REPRESENT
PARTICULAR SEQUEitCLS Of O'S AND I'S. (NASA)

SYNCHRONIZATION
THE PROCESS OF SETTING UP A MECHANISM TO PERFORMV OPERATIONS OR PROCEDURES IN
A TIME OR SEQLENCE HEIRARCHY. (DAN 210) (2) THE SCHEME BY WHICH AREITRATION
CONSTRAINS THE ORDERING OF OPERATIONS ON SHARLE RESOURCES AMONG CONCURRENT
PROCESSES IN TIME SO AS TO LNAELE CONSISTENCY IN THE PROGRAM BEHAVIOR. (DAN
1153)

SYNONYM
AN ADDITIONAL NAME IN THE SOE LANGUAGE EY WHICH AN ITEM IS KNOWN.
(ANSI-X3HI) SEE ALSO ALIAS.

SYNTAX
THE PART OF A GRAMMAR DEALING WITH THE WAY IN WHICH ITEMS IN A LANGUAGE ARE
ARRANGED. (ANSI-X3HI) (2) THE SET OF RULES THAT DEFINES THE VALID INPUT
STRINGS (SENTLNTIAL FORMS) CF A COMPUTER LANGUAGE AS ACCEPTED BY ITS
COMPILER (OR ASSEMBLER). THEREFORE, THE STRUCTURE OF EXPRESSIONS IN A
LANGUAGE, OR THE RULES GOVERNING THE STRUCTURE OF A LANGUAGE. (DAN 1153)

SYNTHESIZERS
THE SY?:THESIZER IS A PROGRAM THAT GENERATES TEST CASE PROGRAMS, FROM A GIVEN
GRAMMAR, THAT MELT SYNTACTIC REQUIREMENTS, OR CONSTRAINTS. (DAN 235)

SYSTEM
(ISO) IN DATA PROCESSING, A COLLECTION OF MEN, MACHINES, AND METHODS
ORGANIZED TO ACCOMPLISH A SET OF SPECIFIC FUNCTIONS. (2) A SYSTEM IS A SET
OF RELATED COMPONENTS OR SUBSYSTEMS. THE COMPONENTS MAY INCLUDE COMPUTER
HARDWARE, A PROJECT ORGANIZATION (IN TERMS OF PEOPLE AND METHODS), A
COMPUTER PROGRAM, CODES AND DATA (AN INPUT LANGUAGE). ETC. (DAN 781) (3)
CONSISTS OF MORE THAN ONE SOFTWARE SUBSYSTEM AND PROVIDES A SOLUTION TO A
PROBLEM. (DAN 137) (4) A COLLECTION OF HUMANS, MACHINES, AND METHODS,
ORGANIZED TO ACCOMPLISH A PURPOSE. (ANSI-X3HI) (5) A SET OR ARRANGEMENT OF
SOFTWARE OR HARDWARE SO RELATED OR CONNECTED AS TO FORM A UNITY CAPABLE OF

114

ACHIEVING THE GOALS SPECIFIED IN ITS DESIGN. (DAN 1201)

SYSTEM ACQUISITION MANAGEMENT
REFERS TO A MANAGEMENT APPROACH TO ACQUIRING COMPUTER SYSTEMS WHICH
ENCOMPASSES THE WHOLE SYSTEM, WITH ELMPHASIS ON THE SOFTWARE, FROM THE
INITIAL CONCEPT FORMULATION TO THE SUPPORT OF THE OPERATIONAL SYSTEM.

SYSTEM ARCHITECTURE
SYNONOMOUS WITH COMPUTER ARCHITECTURE.

SYSTEM DEPENDENCIES
DATA, PARAMETERS, OR EQUIPMENT NECESSARY FOR THE SYSTEM TO FUNCTION
PROPERLY.

SYSTEM DESIGN
THE PROCESS OF TRANSFERRING THE DESIGN REQUIREMENTS INTO AN OVERALL SYSTEM
STRUCTURE THAT SUPPORTS PROGRAMS SATISFYING THOSE REQUIREMENTS. INCLUDES ALL
ACTIVITIES CONCERNED WITH TRANSFORMING FUNCTIONAL
REQUIREMENTS/SPECIFICATIONS INTO A STRUCTURED PROGRAMMING SYSTEM CAPABLE OF
SATISFYING THOSE REQUIREMENTS. (DAN LD7) (2) TRANSLATION OF THE REQUIREMENTS
INTO A DESCRIPTION OF ALL THE COMPONENTS NECESSARY TO IMPLEMENT THE SYSTEM.
(DAN 773)

SYSTEM DESIGN LANGUAGES
A DESIGN TOOL FOR SPECIFYING ABSTRACT MACHINE ARCHITECTURES. (ABBOTT)

SYSTEM ENGINEERING LANGUAGE
A MULTI-PURPOSE LANGUAGE WHICH CAN BE USED FOR REQUIREMENTS AND DESIGN
SPECIFICATION, AUTOMATIC SIMULATION MODEL GENERATION, AUTOMATED DESIGN
ANALYSIS AND VERIFICATION.

SYSTEM INTEGRATION
THE PROCESS OF COMBINING SYSTEM COMPONENTS TOGETHER TO PRODUCE THE TOTAL
SYSTEM. (DAN 318) (2) THE PROCESS OF COMBINING PHYSICALLY, ELECTRONICALLY,
AND FUNCTIONALLY ALL ELEMENTS SPECIFIED FOR A SYSTEM, USUALLY COMPOSED OF
BOTH HARDWARE AND SOFTWARE. FOR EXAMPLE, SYSTEM INTEGRATION IS PERFORMED AT
AN EVALUATION FACILITY BEFORE ACCEPTANCE TESTING MAY BEGIN. (DAN 1201)

SYSTEM RELIABILITY
A MEASURE OR INDICATION OF THE SUCCESS kITH WHICH THE SYSTEM PROVIDES THE
SERVICE SPECIFIED. (DAN 236) SYSTEM HERE REFERS TO BOTH THE HARDWARE AND
SOFTWARE AS A PACKAGE.

SYSTEM SIMULATIONS
COMPUTER SYSTEM SIMULATION IS A TECHNIQUE USED TO PREDICT SYSTEM PERFORMANCE
BY EXERCISINC A MODEL OF THE SYSTEM HARDWARE/SOFTWARE OVER TIME. SIMULATION
BASED ON WELL-PLANNED EXPERIMENTS REPRESENTATIVE OF THE REAL-WORLD
ENVIRONP ENT WILL PRODUCE RESULTS THAT HELP VERIFY AND IMPROVE SYSTEM
PERFORMANCE. THE SIMULATIONS ARE ALSO USED TO HELP PREDICT HOW THE SYSTEM
WILL REACT TO ALTERNAlIVE LOADS WITH MODIFIED CONFIGURATIONS. SPECIFIC
LANGUAGE SYSTEMS SUCH AS ECSS, CSS, SCERT, AND SAM HAVE BEEN DEVISED TO ACT
AS AIDS TO IMPLEMENTATION. (DAN 134)

SYSTEM SIZE

115

TOTAL NUMBER OF MACHINE WORDS NEEDED FOR ALL INSTRUCTIONS GENERATED ON THE
PROJECT PLUS SPACE FOR DATA, LIBRARY ROUTINES AND OTHER CODE. THIS IS THE
TOTAL SIZE Of THE SYSTEM WITHOUT USING ANY OVERLAY STRUCTURE. (SEL)

SYSTEM SPECIFICATION VERIFICATION
SEE COMPUTER PROGRAM VERIFICATION

SYSTEM STRUCTURING
PLACING CONSTRAINTS UPON THE INTERRELATIONSHIPS BETWEEN THE COMPONENTS OF A
SYSTEM. (DAN 236)

SYSTEM SURVIVAL PROBABILITY
SYNONOMOUS WITH INTEGRITY PROBABILITY (DAN 781)

SYSTEM TESTING
SYSTEM TESTING IS THE PROCESS OF TRYING To FIND DISCREPANCIES BETWEEN THE
SYSTEM AND ITS ORIGINAL OBJECTIVES. (DAN 286).

SYSTEM VALIDATION
THE PROCESS OF CHECKING EQUIPMENT CONFORMITY WITH SPECIFICATIONS. (DAN 258)

SYSTEM VERIFICATION
ALL ACTIVITIES CONCERNED WITH ASCERTAINING THAT THE SYSTEM PERFORMS AS THE
CUSTOMER INTENDED. (CAN LD7)

SYSTEMS RELATED SOFTWARE
BY SYSTEMS RELATED SOFTWARE, WE INCLUDE ANY PACKAGE DESIGNED TO AFFECT,
MODIFY, EXTEND OR CHANGE THE 'NORMAL' AVAILABLE PROCESSING PROCEDURE OF THE
OPERATING SYSTEM. THIS COULD INCLUDE SUCH COMPONENTS AS ERROR TRACING, OR
EXTENDED I/O SUCH AS DAIO. (SEL)

TABLE
IN PROGRAMMING THE TERM TABLE MAY BE USED SYNONOMOUSLY WITH "ARRAY", BUT IS
TYPICALLY DISTINGUISHABLE FROM THE ARRAY IN BEING UNIDIMENSIONAL OR
NON-MATHEMATICS ORIENTED.

TABLE HANDLER
THIS INCLULES COMPONENTS WHICH ARE SPECIFICALLY DESIGNED TO GENERATE OR
INTERPRET INFORMATION WHICH IS IN A TABLE FORMAT SUCH AS THE GENERALIZED
TELEMETRY PROCESSOR. (SEL)

TACTICS
A LARGE INTERACTIVE STATISTICAL ANALYSIS AND MODELING SYSTEM.

TAILOR
TO CHANGE A SYSTEk OR PROGRAM TO SUIT A SPECIAL NEED OR PURPOSE. (ANSI-X3HI)

TARGET LANGUAGE
THE LANGUAGE IN WHICH A DESIRED PROGRAM IS TO BE EXPRESSED. (DAN 265)

TARGET MACHINE
THE COMPUTER ON WHICH A PARTICULAR COMPUTER PROGRAM IS DESIGNED TO BE USED.
(NASA)

116

-. 0

TASK MILESTONE
A MAJOR VISIBLE EVENT OR INTERFACE DURING A PROJECT. (DAN LD7)

TECHNOLOGY TRANSFER
REFERS TO SOFTWARE TECHNOLOGY TRANSFER; SEE EDUCATION

TELEMETRY/TRACKING
THIS INCLUDES ALL SOFTWARE COMPONENTS WHICH ARE SPECIFILALLY REQUIRED TO
INTERFACE (EITHER READ, WRITE, OR FORMAT) WITH TELEMETRY OR TRACKING DATA.
(SEL)

TERMINAL INTERFACE PROCESSOR (TIP)
A PACKET-SWITCH HARDWARE USED FOR STORAGE OF MESSAGES, kOUTING OF SIGNALS,
AND COMMUNICATIONS IN THE ARPANET. IT HAS GREATER FLEXIBILITY, AND CAN
HANDLE MORE LINES AND HOSTS THAN THE FUNCIONALLY SINILAR IMP.

TERMINAL SIMULATOR
A COMPUTER PROGRAM USED TO PRESENT INPUT MESSAGES TO THE CONTROL PROGRAM SO
AS TO APPEAR THAT THEY HAD BEEN INPUT FROM AN ACTUAL TERMINAL DEVICE. (DAN
LD7)

TERMINATION PROOF
PROOF THAT A PROGRAM DOES TERMINATE.

TEST
ANY PROGRAM OR PROCEDURE THAT IS DESIGNED TO OBTAIN, VERIFY, OR PROVIDE DATA
FOR THE EVALUATION: RESEARCH AND DEVELOPMENT (OTHER THAN LABORATORY
EXPERIMENTS): PROGRESS IN ACCOMPLISHING DEVELOPMENT OBJECTIVES: OR
PERFORMANCE AND OPERATIONAL CAPABILITY OF SYSTEMS, SUBSYSTEMS, COMPONENTS,
AND EQUIPMENTS ITEMS. (AFR 80-14)

TEST BEDS
A TEST SITE THAT EITHER CONTAINS THE ACTUAL HARDWARE AND INTERFACES
(HARDWARE TEST BED) OR SIMULATES THEM (SOFTWARE TEST VED). 1. HARDWARE TEST
BED - INCLUDES ACTUAL COMPUTER AND INTERFACE HARDWARE, THUS PERMITTING
ACTUAL CHECKOUT OF HARDWARE/SOFTWARE INTERFACES AND ACTUAL INPUT-OUTPUT. THE
PROGRAM EXECUTION IS CONFIRMED USING ACTUAL HARDWARE TIMING CHARACTERISTICS,
BUT THE OUTPUT IS LIMITED, AND IT HAS LIMITED DIAGNOSTIC CAPABILITIES. 2.
SOFTWARE TEST BED - USES AN INSTRUCTION SIMULATOR TO SIMULATE ACTUAL
HARDWARE. THE APPROACH POORLY REPRESENTS ACTUAL I/U, PUNS 7 TO 15 TIMES
REAL-TIME, AND IS AN EXPENSIVE METHOD Of CONDUCTING LENGTHY TESTING Of
SOFTWARE. THE APPROACH PERMITS FULL CONTROL OF INPUTS AND COMPUTER
CHARACTERISTICS, ALLOWS PROCESSING OF INTERMEDIATE OUTPUTS WITH OUT
DESTROYING REAL TIME, AND ALLOWS FULL TEST REPEATABILITY AND DIAGN(STICS.
(DAN 134)

TEST CONTROL PROGRAM
USUALLY REFERS TO SCENARIO OR THE PROGRAM READING ANU INTLRPRITING A
SCENARIO, BUT COULD BE ANY SOFTWARE WHICH PROVIDES AUTOMATIC UIRE(TION 1(;k
TESTING. (DAN 1201)

TEST DATA
TEST ENVIRONMENT DATA THAT ARE PREPARED MANUALLY OR BY AN AU1UMATI(ItSI
CASE GENERATOR (DAN LD7)

117

TEST DATA BASE
COLLECTION OF DATA STORED ON A COMPUTER PERIPHERAL DEVICE (E.G., TAPE, DISK,
THAT CLOSELY MATCHES THE "REAL" DATA BASE). IDEALLY, A TEST DATA BASE SHOULD
BE IDENTICAL TO A REAL DATA BASE BUT USUALLY IT ONLY PROVIDES REPRESENTATIVE
DATA. DAN 154)

TEST DATA GENERATION
THE PREPARATION, BY MANUAL OR AUTOMATED MEANS, OF DATA TO BE USED IN TESTING
A PROGRAM OR SYSTEM.

TEST DESIGN
THE SELECTION OF THE OPTIMUM METHODS, TOOLS, PROCEDURES, AND TEST CASES TO
BE USED IN TESTING A SOFTWARE PROGRAM OR SYSTEM.

TEST DRIVERS
SOFTWARE TEST DRIVERS ARE TOOLS WHICH PROVIDE THE FACILITIES FOR EXECUTING
THE TEST HARDWARE/SOFTWARE BY LOADING INPUT DATA FILES WHICH REPRESENT THE
TEST SITUATION OR AN EVENT TO YIELD RECORDED DATA IN ORDER TO EVALUATE
ACAINST EXPECTED RESULTS. TEST DRIVERS ARE RESTRICTED TO OPERATION IN THE
SAME HOST ENVIRONMENT AS THE TEST ARTICLE. INPUT/OUT FUNCTIONS MAY BE
BYPASSED OR MODIFIED BY TEST DRIVER SOFTWARE AND ARE GENERALLY DESIGNED TO
FACILITATE THE PREPARATION OF INPUT AND THE EVALUATION OF TEST OUTPUT DATA.
TEST DRIVERS MAY OPERATE IN EITHER STATIC OR DYNAMIC MODES. STATIC TEST
DRIVERS MAY BE EITHER ONE-SHOT OR REPETITIVE. THIS TYPE OF DRIVER USUALLY
PROVIDES AT LEAST THE FACILITIES FOR: A. READING TEST INPUT DATA INTO
SPECIFIC DATA BASE LOCATIONS. B. PASSING CONTROL TO THE TEST ARTICLE OR ITS
ASSOCIATED EXECUTIVE SOFTWARE. C. RESUMING CONTROL AFTER EACH EXECUTION AND
READING OUT OR STORING TEST RESULTS. DYNAMIC TEST DRIVERS OPERATE IN REAL
TIME OR NEAR-REAL TIME TO PROVIDE A MORE REALISTIC RUN-TIME ENVIRONMENT THAN
IS POSSIBLE WITH STATIC DRIVERS. ALL OF THE FACILITIES LISTED FOR STATIC
DRIVERS ARE USUALLY PROVIDED BY A DYNAMIC TEST DRIVER. ADDITIONALLY, A TEST
EXECUTIVE IS GENERALLY PROVIDED TO SEQUENCE TEST AND DATA TRANSFER
OPERATIONS. OTHERWISE, TIHE OPERATIONAL EXECUTIVE MUST BE DESIGNED TC
INTERFACE WITH A DYNAMIC TEST DRIVER. TEST DRIVERS ARE OFTEN DESIGNED TO
WORK WITH A VARIETY OF OFF-LINE UTILITY AND SUitORT COMPUTER PROGRAMS. SOME
OF THESE ARE VARIOUSLY KNOWN AS TEST GENERATORS/DISTRIBUTORS, SCENARIO
GENERATORS, TEXT EDITORS, TEST REPORT GENERATORS, AND DATA REDUCTION AND
ANALYSIS SOFTWARE. (SET) SEE ALSO: ENVIRONMENT SIMULATOR (2) TO RUN TESTS IN
A CONTROLLED MANNER, IT IS OFTEN NECESSARY TO WORK WITHIN THE FRAMEWORK OF A
"SCENARIO" - A DESCRIPTION OF A DYNAMIC SITUATION TO ACCOMPLISH THIS, IT IS
NECESSARY TO LOAD THE INPUT DATA FILES FOR THE SYSTEM WITH DATA VALUES
REPRESENTING THE TEST SITUATION OR EVENTS TO YIELD RECORDED DATA TO EVALUATE
AGAINST EXPECTED RESULTS. THESE AIDS PERMIT RELATIVELY EASY GENERATION OF
DATA IN EXTERNAL FORM TO BE ENTERED AUTOMATICALLY INTO THE SYSTEM AT THE
PROPER TIME. (DAN 134) (3) SEE ALSO: DRIVERS, DRIVER PROGRAMS, TEST MODULE
DRIVER

TEST GRAMMAR
A TEST GRAMMAR IS A CONTEXT-FREE GRAMMAR WHICH DESCRIBES THOSE ASPECTS OF A
PROGRAM TO BE TESTED, AS WELL AS THE ASSUMPTIONS AS TO WHICH TEST CASES ARE
CONSIDERED EQUIVALENT. THE GRAMMAR GENERATES TEST DATA IN LEVELS OF EVER
INCREASING COMPLEXITY OF TEST CASES. AT EACH LEVEL THE PROGRAMMER MAY USE
THE RESULTS OF TESTING AT PREVIOUS LEVELS TO STRENGTHEN THE ASSUMPTIONS ON
THE TEST GRAMMAR, THEREBY, REDUCING THE NUMBER OF TEST CASES GENERATED AT

118

No

I

SUBSEQUENT LEVELS. (CAN 837)

TEST MANAGEMENT
MANAGEMENT PROCEDURES DESIGNED TO CONTROL IN AN ORDERED WAY A LARGE AND
EVOLVING AMOUNT OF PIECES OF INFORMATION ON SYSTEM FEATURES TO BE TESTEU, ON
SYSTEM IMPLEMENTATION PLANS, AND ON TEST RESULTS. (DAN 529)

TEST METHODOLOGIES
THE PROCEDURES AND TOOLS UTILIZED IN PROVING THAT A PROGRAM CORRECTLY
FULFILLS ITS REQUIREMENTS. (DAN 1201)

TEST MODULE DRIVER
INDEPENDENT MODULES WHICH EXECUTE UNDER THE SAME OPERATING SYSTEM AS THE
SOFTWARE TO BE TESTED AND PERFORM SPECIFIC TESTS IN RESPONSE TO EXTERNAL
STIMULI. (DAN 1201) SEE ALSO DRIVERS, DRIVER PROGRAMS

TEST PLAN
A MANAGEMENT DOCUMENT THAT DESCRIBES HOW AND WHEN SPECIFIED TEST OBJECTIVES
WILL BE MET. (DAN 134) (2) THE TEST PLAN USUALLY CONTAINS THE FOLLOWING
INFORMATION: A) A GENERAL TEST PHILOSOPHY OR STRATEGY. B) A FUNCTIONAL
DESCRIPTION OF WHAT IS BEING TESTED. C) A REPRESENTATION OF FUNCTIONAL
COVERAGE (I.E. MATRIX, CAUSE AND EFFECT, FAMILY TREE, ETC.) D) A DESCRIPTION
OF WHAT EACH TEST CASE WILL TEST AND HOW IT WILL BE ACCOMPLISHED. 3) TESTING
DEPENDENCIES (BUILD REQUIREMENT, HARDWARE/SIMULATOR NEEDS, ETC.) F) ENTRANCE
AND EXIT CRITERIA. (DAN 781) (3) A FORMAL DOCUMENT WHICH DEFINES THE TESTS
TO BE PERFORMED TO VERIFY THAT THE COMPUTER PROGRAM MEETS THE PERFORMANCE
REQUIREMENTS STATED AS THE ACCEPTANCE CRITERIA DEFINED IN THE PROGRAM0
PERFORMANCE SPECIFICATION. (DAN 1201)

TEST PLAN DOCUMENT
A PLAN THAT TESTS THE EFFECTIVENESS OF THE OBJECT SYSTEM, AS IMPLEMENTED,
AND DETERMINES HOW IT CAN BE VALIDATED, VERIFIED, AND CERTIFIED. THIS
DOCUMENT IS INPUT TO THE SUBSEQUENT FUNCTIONS OF THE QUALITY ASSURANCE
PROCESS AND TO THE PROGRAM VALIDATION FUNCTION. (DAN LD/)

TEST PLAN INSPECTION
A TEST PLAN INSPECTION IS A FORMAL METHOD OF EXAMINING TIE TEST PLAN. THE
PURPOSE OF THE INSPECTION IS TO ASSURE THE COMPLETENESS AND ACCURACY OF THE
TEST PLAN. (DAN 781)

TEST PROCEDURE
A FORMAL DOCUMENT DEVELOPED FROM A TEST PLAN THAT PRESENTS DETAILED
INSTRUCTIONS FOR THE SET UP, OPERATION, AND EVALUATION RESULTS FOR EACH
DEFINED TEST. (DAN 1201)

TEST REPORT
A DV'UMENT RECORDING THE RESULTS OF A PROGRAM TEST. (DAN 1201)

TEST RESULT PROCESSOR
A COMPUTER PROGRAM USED TO PERFORM TEST OUTPUT DATA REDUCTION. FORMATTING
AND PRINTING. SOME PERFORM STATISTICAL ANALYSIS WHERE THE ORIGINAL DATA MAY
BE THE OUTPUT OF A MONITOR. (DAN 134)

TEST SYSTEM

119

AIi

THE SYSTEM OF HARDWARE, OPERATIONAL SOFTWARE AND TEST SOFTARE INTEGRATED
AND USED TO RUN PRODUCT ACCEPTANCE TESTS ON THE OPERATIONAL SOFTWARE. (DAN K
1201)

TEST TOOLS
THE SUPPORT SOFTWARE USED AS AN AID IN PROGRAM CHECKOUT AND DEBUGGING. (DAN
1201) SEE ALSO: AUTOMATED TESTING, SUPPORT SOFTWARE, AUTOMATED VERIFICATION
TOOLS

TEST VALIDITY
THE DEGREE TO WHICH A TEST ACCOMPLISHES ITS SPECIFIED GOAL. (DAN 1201) SEE
ALSO: TESTEDNESS

TESTABILITY
CODE POSSESSES THE CHARACTERISTIC TESTABILITY TO THE EXTENT THAT IT
FACILITATES THE ESTABLISHMENT OF VERIFICATION CRITERIA AND SUPPORTS
EVALUATION OF ITS PERFORMANCE. THIS IMPLIES THAT REQUIREMENTS ARE MATCHED TO
SPECIFIC MODULES, OR DIAGNOSTIC CAPABILITIES ARE PROVIDED, ETC. (DAN 239)

TESTABLE
A SOFTWARE PRODUCT IS TESTABLE TO THE EXTENT THAT IT FACILITATES THE
ESTABLISHMENT OF VERIFICATION CRITERIA AND SUPPORTS EVALUATION OF ITS
PERFORMANCE...SOME OF THE CHARACTERISTICS WHICH INCREASE TESTABILITY ARE:
(A) FUNCTIONAL MODULARITY, WHICH FACILITATES THE MATCHING OF REQUIREMENTS TO
SPECIFIC MODULES OF A PROGRAM. (B) CAPABILITY OF PROVIDING DIAGNOSTICS, E.G.
THROUGH USE OF CONDITIONAL ASSEMBLY TO INVOKE MACRO GENERATIUN OF CODE FOR
DIAGNOSTIC PRINTOUTS, UNDER USER CONTROL. (C) AUXILIARY CODE IS USED TO
EVALUATE CERTAIN INVARIANTS (E.G., CODE IS ADDED TO CALCULATE THE TOTAL
ENERGY FOR VARIOUS STATES OF A CONSTANT ENERGY SYSTEM). (D) COMMENTS
INDICATING UNACCEPTABLE VALUES AND THE RECOMMENDED DEFAULT ACTION ARE PLACED
AT A POINT WHERE INTERMEDIATE OR REQUIRED OUTPUT IS DEFINED. (SET)

TESTEDNESS
TESTEDNESS IS A DYNAMIC MEASURE WHICH INDICATES THE EXTENT TO WHICH A
PARTICULAR PIECE OF SOFTWARE HAS BEEN TESTED BY PARTICULAR TEST CASES. THE
MEASURE IS DEFINED IN SUCH A WAY THAT WHEN MEASURING THE EXTENT TO WHICH A
LOGICAL STRUCTURE OR PART OF A LOGICAL STRUCTURE HAS BEEN EXERCISED OR
TESTED; THE TESTEDNESS OF A NODE INCREASES AS THE NUMBER OF TIMES IT IS
EXERCISED INCREASES AND DECREASES AS THE PROBABILITY OF ERROR OR THE
ACCESSIBILITY INCREASES. (DAN 766)

TESTING
TESTING IS THE PART OF THE SOFTWARE DEVELOPMENT PROCESS WHERE THE COMPUTER
PROGRAM IS SUBJECT TO SPECIFIC CONDITIONS TO SHOW THAT THE PROGRAM MEETS ITS
INTENDED DESIGN. IT IS THE PROCESS OF FEEDING SAMPLE INPUT DATA INTO A
PROGRAM, EXECUTING IT, AND INSPECTING THE OUTPUT AND/OR BEHAVIOR FOR
CORRECTNESS. THE CORNERSTONE OF RELIABILITY METHODOLOGY IS TESTING.
TRADITIONALLY, TESTING IS THE DEVELOPMENT PHASE WHERE THE LARGEST QUANTITY
OF ERRORS IS DETECTED AND CORRECTED. BUT, GIVEN THIS EXPENDITURE, THE
SOFTWARE DEVELOPER HAS NO REAL ASSURANCE OF DEVELOPING ERROR-FREE SOFTWARE,
FOR THE TESTING CYCLE ONLY DEMONSTRATES THE PRESENCE OF ERROR. THE FOLLOWING
TECHNIQUES OR TOOLS ARE CONSIDERED PART OF THE TESTING CYCLE: ANALYZERS,
ASSERTIONS, SOURCE LANGUAGE DEBUG, INTENTIONAL FAILURE, TEST DRIVERS,
REGRESSION TESTING, ENVIRONMENT SIMULATORS, STANDARDIZED TESTING, SYMBOLIC

120

I

EXECUTION , INTERACTIVE DEBUG, FOREIGN DEBUG, 'SNIAK CIRCUIT ANALYSIS... ALSO
SEE ANALYZERS, ASSERTIONS, SOURCE LANCUAGL DEBUG, TEST DRIVERS, REGRESSION
TESTING, ENVIRONMENT SIULATORS, INTERACTIVE DEBUG, AND FOREIGN DEBUG. (SLT)
(2) EXERCISING DIFFERENT MODES OF COMPUTER PROGRAM OPERATION TfiRoUGH
DIFFERENT COMBINATIONS OF INPUT DATA (TEST CASES) TO FIND ERRORS. (IEEE TASK
GROUP FOR STANDARDIZATION OF SUFTWARL TEST DOCUMENTATION)

TESTING CRITERIA
THE REQUIREMENTS THE PROGRAM UNDER TEST USI SATISY. (DAN 1201)

TESTING EFFECTIVENESS
THE DECREE TO WHICH THE SOFTWAkL CAN BE CHECKED OUT WITH ALL "EUGS" KLMOVED.
(DAN 1201)

TESTING OBJECTIVE
A GOAL TO BE ATTAINED FROM TESTING SOFTWARE. (bAN 1201)

TESTING PHASE
DURING THE TEST PHASE, SYSTEM INTEGRATION OF ThE SOFTWARE COMPONENTS AND
SYSTEM ACCEPTANCE TESTS ARE PERFORMED AGAINST THE REPQUIREMLNTS. (SET) (2)
THE DESIGN OF TESTS, TESTING STRATEGIES, AND THE RUNNING UF SUCH TESTS.
(SEL)

TESTMASTER
AN AUTOMATIC SOFTWARE TEST DRIVER AVAILABLE FROM HOSKYNS, INC. ORIENTED
TOWARD TESTING OF COBOL PROGRAMS RUNNING ON AN IBM 360/370 SYSTEM. (DAN286)

TEXT DATA
PROGRAM DOCUMENATION THAT IS PREPARED MANUALLY AND UPDATED BY A TEXT LDITOR.
(DAN LD7)

TEXT-FORMATTING APPLICATIONS
INDEXING TERM. REFERS TO SOFTWARE USED AS A COMPONENT IN A TEXT-FORMATTING
SYSTEM, OR TO THE DEVELOPMENT OF THE SOFTWARE FOR A TEXT-FORMATTING SYSTEM.

TEXT-PROCESSING APPLICATIONS
INDEXING TERM. REFERS TO SOFTWARE USED AS A COMPONENT IN A TEXT-PROCESSING
SYSTEM, OR TO THE DEVELOPMENT OF THE SOFTWARE FOR A TEXT-PROCESSING SYSTEM.

THEOREM PROVER
A SOFTWARE PACKAGE THAT AUTOMATICALLY OR SEMI-AUTOMATICALLY EVALUATES
INPUTTED THEOREMS. IT IS USED TYPICALLY AS THE FINAL STAGE OF A PROOF OF
CORRECTNESS SYSTEM.

THROUGHPUT
A MEAURE OF THE AMOUNT OF WORK PERFORMED BY A COMPUTING SYSTEM OVER A GIVEN
PERIOD OF TIME E.G., JOBS PER DAY. (2) A MEASURE OF COMPUTER CAPACITY IN
TERMS OF EXECUTION RATE AND WORD SIZE. (NASA)

TIER CHART
A TREE-GRAPH REPRESENTATION OF A PROGRAM AND ITS NAMED MODULES, IN WHICH THE
SUBORDINATION RELATION IS INVOCATION. SUBROUTINI INVOCATION NODES OCCUR MORE
THAN ONCE; HOWEVER, ALL BUT ONE OF ThESE NODES APFLA , AS LEAVES OF THE TREE,
AND THE OTHER FORMS THE ROOT OF THE SUBROUTINE TIER lIl RARCHY. (DAN 1153)

121

TIME DOMAIN
AN APPROACH TO SOFTWARE RELIABILITY ESTIMATION WHICH PREDICTS SOFTWARE
FAILURES AS A FUNCTION OF TIME. REASONABLE ESTIMATES OF MEAN TIME TO FAILURE
AND THE CHECKOUT TIME REQUIRED TO ACHIEVE A GIVEN LEVEL OF ASSURANCE FOR
PROGRAM CORRECTNESS CAN BE CALCULATED BY FITTING OBSERVED DATA TO A
POSTULATED FAILURE TIME DISTRIBUTION, OR BY CALCULATING THE MOMENTS OF THE
DISTRIBUTION (MEAN, STANDARD DEVIATION) AND MATCHING THE ACTUAL TO THE
THEORETICAL IN THE SENSE OF MAXIMUM LIKELIHOOD ESTIMATORS.

TIMESHARING
A MODE OF OPERATION THAT PROVIDES FOR THE INTERLEAVING OF TWO OR MORE
INDEPENDENT PROCESSES ON ONE FUNCTIONAL UNIT. (ANSI-X3)

TIMING ANALYZER
A COMPUTER PROGRAM THAT MONITORS AND PRINTS EXECUTION TIME OF ALL PROGRAMS
ELEMENTS (FUNCTIONS, ROUTINES, AND SUBROUTINES). (CAN 134)

TIP
SEE: TERMINAL INTERFACE PROCESSOR

TOLERANCE
A SYSTEM'S INPUT DATA TOLERANCE IS A MEASURE OF THE SYSTEM'S ABILITY TO
ACCEPT DIFFERENT FORMS OF THE SAME INFORMATION AS VALID, (I.E. WITHOUT
MALFUNCTION OR REJECTION) (DAN 781) (2) NEARLY SYNONOMOUS WITH ROBUSTNESS.

TOP DOWN
IN DESIGNING COMPUTER PROGRAMS, THE TOP-DOWN APPROACH IDENTIFIES MAJOR
FUNCTIONS TO BE ACCOMPLISHED, THEN PROCEEDS FROM THERE TO AN IDENTIFICATION
OF THE LESSER FUNCTIONS THAT DERIVE FROM THE MAJOR ONES. THE DEFINITION OF
"TOP-DOWN" IS THE MIRROR IMAGE OF "BOTTOM-UP" WHERE THE LOWER PROCEDURES ARE
WRITTEN FIRST, AND UPPER LEVELS LATER. TOP-DOWN DESIGN INVOLVES BREAKING A
LARGE PROGRAM INTO SMALLER SUBPROGRAMS THAT CAN BE DEALT WITH INDIVIDUALLY.
TOP-DOWN CONCEPTS CAN BE APPLIED TO CODING AND TESTING. (SET) SEE ALSO:
HIERARCHICAL STRUCTURE, LEVEL OF ABSTRACTION, STEP-WISE REFINEMENT,
STRUCTURED PROGRAMMING. (2) THE DESIGN (OR IMPLEMENTATION) OF THE SYSTEM,
STARTING WITH A SINGLE COMPONENT, ONE LEVEL AT A TIME, BY EXPANDING EACH
COMPONENT REFERENCE AS AN ALGORITHM POSSIBLY CALLING OTHER NEW COMPONENTS.
(SEL) (3) A GENERAL TERM INDICATING A HEIRARCHY OF DEPENDENT ELEMENTS AND AN
ORDER OF ANALYSIS, DEFINITION, DESIGN OR PRODUCTION BEGINNING WITH THE MOST
COMMON ELEMENT(S) (TOP) TO THE LEAST COMMON ELEMENTS (ON DOWN). (DAN 1201)

TOP DOWN DEVELOPMENT
TECHNIQUE FOR IMPLEMENTING HIERARCHICALLY STRUCTURED PROGRAMS. HERE THE
TOP-LEVEL ROUTINES ARE WRITTEN FIRST AND LOWER LEVEL ROUTINES, CALLED STUBS,
ARE WRITTEN TO INTERFACE WITH THESE. (DAN 237) ONCE REQUIREMENTS ARE FIRMED
UP, THE DEVELOPMENT PROCESS DECOMPOSES THE PROPOSED SYSTEM INTO A SERIES OF
LEVELS IN A HIERARCHY, BEGINNING AT THE TOP AND WORKING DOWN. THE HIGHEST
LEVEL IS THEN DESIGNED, CODED,AND SUBSEQUENTLY TESTED FIRST, USING STUBS
WITH DUMMY CODE TO STAND IN FOR LOWER-LEVEL UNITS THAT ARE INVOLVED, AND SO
ON. (DAN 227)

TOP-DOWN DESIGN
TOP DOWN DESIGN IMPLIES AN ORDERING TO THE SEQUENCE OF DECISIONS WHICH ARE
MADE IN THE DECOMPOSITION OF A SOFTWARE SYSTEM, BY BEGINNING WITH A SIMPLE

122

DESCRIPTION OF THE ENTIRE PROCESS (TOP LEVEL). THROUGH A SUCCESSION OF
REFINEMENTS OF WHAT HAS BEEN DEFINED AT EACH LEVEL, LOWER LEVELS ARE
SPECIFIED. (SET) (2) A DESIGN AND CODING CRITERION IN WHICH OPERATIONS ARE
DEFINED IN A HIERARCHICAL MANNER AND FROM THE MORE GENERAL TO THE MORE
PRECISE. TOP LEVEL OPERATIONS ARE DEFINED IN RELATIVELY GENERAL TERMS.
OPERATIONS ON ALL LEVELS (EXCEPT THE BOTTOM ONE) ARE DEFINED MORE PRECISELY
IN TERMS OF OPERATIONS ON THE LEVEL IMMEDIATELY BELOW. THE DEFINING OF A
MORE GENERAL OPERATION IN TERMS OF MORE SPECIFIC, LOWER LEVEL OPERATIONS IS
CALLED STEPWISE REFINEMENT. (ABBOTT)

TOP-DOWN IMPLEMENTATION
A DEVELOPMENTAL METHODOLOGY WHOSE DISTINGUISHING FEATURE IS THAT HIGHER
LEVELS OF THE PROGRAM ARE IMPLEMENTED (DESIGNED, CODED, TESTED) PEFORE ThE
LOWER LEVELS ARE IMPLEMENTED. THIS METHODOLOGY IMPLIES THAT SYST['
INTEGRATION PROCEEDS FROM THE HIGHEST LEVEL TO THE LOWEST LEVEL LY
INTEGRATING SUCCESSIVELY LOWER-LEVEL MODULES/COMPONENTS INTO SUCCISSFULLY
INTEGRATED HIGHER-LEVEL MODULES/COMPONENTS.

TOP-DOWN PARSING
TOP-DOWN DECOMPOSITION BY DIJKSIRA: A PARSING IS A DECOMPOSITION

TOP-DOWN PROGRAM DEVELOPMENT
DOWNWARD FROM THE TOP LEVEL OF PROGRAM DESIGN TO THE BOTTOM LEVELS,
CONTINUOUSLY EXERCISING THE ACTUAL INTERFACES BETWEEN PROGRAM, MODULES. THE
BOTTOM LEVEL MAY BE STANDARD PACKAGED ROUTINES - DATA ACCESS METHODS, SORT
ROUTINES OR INTERFACES WITH OTHER SYSTEMS. THIS APPROACH IS THE OPPOSITE OF
THE USUAL ONE OF CHECKING THE BOTTOM-LEVEL MODULES FIRST AND WORKING UP,
FINALLY INTEGRATING AND TESTING THE ENTIRE SYSTEM. HERE, THE INTEGRATION OF
MODULES IS A CONTINUOUS PROCESS. (DAN LD7)

TOP-DOWN PROGRAMMING
THE CONCEPT OF PERFORMING IN HIERARCHICAL SEQUENCE A DETAILED DESIGN, CODE,
INTEGRATION AND TEST AS CONCURRENT OPERATIONS. (DAN 140)

TOP-DOWN PROGRAMMING PROCESS
AN EXPANSION OF FUNCTIONAL SPECIFICATIONS TO SIMPLER AND SIMPLER FUNCTIONS
UNTIL, FINALLY, STATEMENTS OF THE PROGRAMMING LANGUAGE ITSELF ARE REACHED.
(SET)

TOP-DOWN STRUCTURED PROGRAM
(TDSP) A STRUCTURED PROGRAM WITH THE ADDITIONAL CHARACTERISTICS OF THE
SOURCE CODE BEING LOGICALLY, BUT NOT NECESSARILY PHYSICALLY, SEGMENTED IN A
HIERARCHICAL MANNER AND ONLY DEPENDENT ON CODE ALREADY WRITTEN. CONTROL OF
EXECUTION BETWEEN SEGMENTS IS RESTRICTED TO TRANSFERS BETWEEN ADJACENT
HIERARCHICAL SEGMENTS. (DAN 140) (2) A PROGRAM WHICH SATISFIES THE DESIGN
CRITERIA OF TOP DOWN DESIGN AND STRUCTURED CODE. (ABBOTT)

TOP-DOWN STRUCTURED PROGRAMMING
THE PROCESS OF DEVELOPING TOP DOWN STRUCTURED PROGRAMS. ASSOCIATED WITH TOP
DOWN STRUCTURED PROGRAMMING ARE CERTAIN PRACTICES SUCH AS INDENTATIONS OF
SOURCE CODE TO REPRESENT LOGIC LEVELS, THE USE OF INTELLIGENT DATA NAMES AND
DESCRIPTIVE COMMENTARY. TOP DOWN STRUCTURED PROGRAMMING REQUIRES TOP DOWN
PROGRAMMING AS THE PRIMARY IMPLEMENTATION METHODOLGY. (DAN 140)

123

I

TOP-DOWN TESTING
IF MODULES ARE PRODUCED IN A TOP DOWN ORDER, THEN TOP DOWN TESTING CAN ALSO
BE EMPLOYED USING A PARTIALLY COMPLLTED SYSTEM IN WHICH L(,WLR LEVELS Aki
REPRESENTED BY PROGRAM "STUBS" AND PROGRAMS ARE EXECUTED IN THE ENVIRONMENT
IN WHICH THEY WILL ACTUALLY OPERATE. THIS APPROACH ALLOWS FOR EARLIER
INTEGRATION AND TESTING WHICH SHOULD UNCOVER PROBLEMS SOONER THEN
CONVENTIONAL TESTING WHERE INTEGRATION IS THE LAST STEP. (SET)

TOTAL CORRECTNESS
A PROGRAM IS TOTALLY CORRECT WITH RESPECT TO AN INTLDED FUNCTION IF IT (I)
IS IS PARTIALLY CORRECT WITH RESPECT TO THAT FUNCTION, AND (2) TERMINATES
AFTER A FINITE LENGTH OF TIME ON EACH INPUT FOP WHICH THE FUNCTION IS
DEFINED. MOST METHODS FOR PROVING TOTAL CORRECTNESS REQUIRE A SEPARATE PRO(J
FOR TERMINATION, USUALLY BASED ON A WELL-ORDERING OF PROGRAM STATES. (SET)
(2) IF A PROGRAM BOTH TERMINATES AND SATISFIES ITS OUTPUT SPECIFICATIGN,
THAT PROGRAM IS SAID TO BE TOTALLY CORRECT. (DAN 419)

TRACE
A RECORD OF PROGRAM EXECUTION SHOWING THE SEQUENCE OF SUBROUTINE AND
FUNCTION CALLS, AND SOMETIMES THE VALUE OF SELECTED VARIABLES. CODE USED IN
PRODUCING A TRACE IS AUTOMATICALLY INSERTED INTO A PROGRAM, USUALLY BY THE
COMPILER, SOMETIMES BY OTHER SUPPORT SOFTWARE. (SEL) SEE ALSO: SCOURCE
LANGUAGE DEBUG.

TRACE PROGRAM
A COMPUTER PROGRAM THAT RECORDS THE CHRONOLOGICAL SEQUENCE OF EVENTS TAKEQ
BY A TARGET PROGRAM DURIfG ITS EXECUTION. (DAN 134)

TRACER PROGRAM
A PROGRAM ANALYSIS TOOL WHICH WILL ANALYZE COMPUTER PROGRAMS LOOKING FOR
"DEAD CODE" - I.E., CODE IN A PROGRAM WHICH CAN NOT bE EXECUTED. (DAN 142)

TRANSFORMATION (OF DATE)
THE PROCESS OF CHANGING DATA FROM ONE FORM TO ANOTHER FORM. TRANSFORMATION
WORK IS THE MEASURE Of THE ENERGY OR RESOURCES NEEDED TO CONVERT DATA FROM
SOME ORIGINAL STATE TO ITS TRANSFORMED STATE. (DAN 781) (2) TRANSFORMATION
WORK CAN BE AN INPUT TO PERFORMANCE EVALUATION.

TRANSLATION
THE CONVERSION OF A COMPUTER PROGRAMj FROM ONE PROGRAMMING LANGUAGE TC AN
EQUIVALENT PROGRAM IN A DIFFERENT LANGUAGE, FREQUENTLY IN REFERENCE TO
COMPILATION OR ASSEMBLY. (NASA)

TRANSLATOR
A COMPUTER PROGRAM WRITTEN TO ACCEPT INVORMATION FROM ONE SYSTL OF
REPRESENTATION AND CONVERT THIS INTO EQUIVALENT INFORMATION IN ANOTHER
SYSTEM OF REPRESENTATION. (DAN 134)

TRANSPORTABILITY
THE CAPABILITY OF A PROGRAM TO OPERATE ON VARIOUS DIFFERENT MAKE AND MODEL
COMPUTERS WITH A MINIMUM OF MODIFICATION REQUIRED. (DAN 1201)

TRAP
A TECHNIQUE IN WHICH THE LOGIC FLOW OF A PROGRAM IS INTEKRUPTED FOR TilN

124 -

a b

PukPOSL of SETTING ASIDL IUTLR!.kL'LLT IPH2 IS, ;Lk[,rl (4. tIl54'.Nu
SPECIAL TEST FUNLTIUNS. (bti 124)

TRE E
AN AC Y L L CUNNLC ILL' U (4kAPH. .! H i t I ? :, >F Li. , '*tr. :I T Ft I'i.
N-I EDGELS. IV[PY i-AIP (A (&:~.' (?i!cLTI U-H' i)CLL Id [Alfh. Till 1-i f
OFTE . HLIdkL SL.TS A HtLIkAkuc.Y, !r %I. 1, 1 Li A LL L I. i 70 L! ?.i ;SUbukbl ' ,AT[Lp FL;T N ie t %%l ! lb ;).i IW J ri L t I L TUL! ' 1'? '

TRI-SERVICE
ARM.Y, ,AVY, AIR forCE- ;L, (IvI ;t PP L. , j f, * i If(k . I Ti t 3. .
(DAN 1'2)

TRUSTED SOFTWARE
SbU Tkook. USLb fOk ''L7i-L'IIL LA .A SY t 7 . 7*;," I-ILk , C Ti-. I lT
TECHNOLOGY CURRLNTLY AY'AILbi.A , A ..ASL;NAEL[IPOST I (I L I L S
AND NCN-INT.RERRELLNC[I,, THE 11 T -LEV IS. Vi 'I TS M1 $ i [f SY, F'hLILY , .
"SECURE SOFTWAR".

TYPE EQUIVALENCE
A TERM USLD T DLINLTL LATA STPULTLFLS, I U? :1CTl , 1-, : (! t. * "I -LLIS h, C 1i ,'A' I,I
USED BY MORE THAN ONE i'RuRP, (LR I t (*/.. I TI it1 '(S[f . .L Ir1,,
EDITOR ROUTINE, TWO TYPES A P. I ,U:VALIt,T UL Y : f Tf,. Y ARE :LL NT] (,I
INCLUDING HA' !HE SAME ?,A;,i (OP F, T- P N/ME) "PI Al loSf S . SC, T
TYPES ARE EQUIVALLT If TI(EY AFE TRLCILPLL.Y ISIU kIIC. (uW. -4

TYPE (DATA)
SEE DATA TYPE

TYPE OF SOFTWARE
THE FOUR MAJOR CLASSIFICATIONS OF FOST OF ThI A1LIC*.BLI S0VI7ARE , IM
DEVELOPED ARE : SCIENTIFIC, FUSIMESS/1 INANCIAL, SYSTE'YS ANU LTI IIY. 7i4SL
CLASSIFICATIONS MAY BE REF INlD INTO T11 CATGU(.ILS (A: STHG 'P(CINSSN,
CATA BASE APPLICATIONS, REAL TIME, AND TABLE I I-1LLR. A I LPIlHF FIF INLINEINT
INCLUDES THE CATEGORIES OF: ATTITLDL/ORBIl, TELPIT RY/TRA,(i,
COPMAND/CONTROL, MATHEMATICAL, AND NUMERICAL ON-EHAR,. (SLL)

UNDERSTANDABLE
A SOFTWARE PRODUCT IS UNDERSTANDABLE TO T!L EXTENT THAT ITS PURPOS[IS (LEAP
TO THE INSPECTOR...MANY TLCHNIQUES HAVE E.EN PROPOSID T(I tCRPEAS
UNDERSTANDABILITY. PROM-INENT AMONG THESE ARE C(DE STRUCTURLDNI SS kfI(S
SIMPLIFIES LOGICAL FLO1W, LOCAL COMPENTARY, TO EXPLAIN COMI'LEY ((1L11
INSTRUCTIONS, AND CONSISTENTLY USED MNEMONICS. IN ADDITION, PFLkENCES T(O
READILY AVAILABLE AND UP-TO-DATE DOCUMENTS NELD TO BE INCLUDED I N S IR(
COMMENTARY SO THAT THE INSPECTCR .AY COMPREHEND MORL EStTLRIC CoNTINTS.
INPUT, OUTPUTS, AND ASSUKPTIOS SHOULD BE STATED IN THE F(1R OF ULC)SSAfU S
OR PROSE COMMENTARY. IN GENERAL, A CODING STANDARD ENCOPASSING fORMAT oF
HEADERS AND INDENTATION SHOULD BE FOLLOWED FOR ALL VODULLS SO THAI
INFORMATION CAN BE FOUND WHERE EXPECTED...ALSO SEE - MAINTAINABLL,
STRUCTURED PROGRAMMING, MODULARITY. (SET)

UNIT
A SET OF COMPUTER PROGRAM STATEMENTS TREATED LOGICALLY AS A WHOLE. THE kORD
"UNIT" IS RESTRICTED IN THE CONTEXT OF A COMPUTER PROGRAM STRUCTURE. THIS

125

e ,5

USAGE DUES NUT PI[ftk TO A UEVICI Ut,'T, ck LUGICAL UNIT. (SET) (2) A NAMLD
SUBDIVISIUts Of A ;PkUoGA!. ,,HICH IS CflAbLE OF fLING STOKED IN A I'R(OGRA.
SUPPORT LIEHARY AND VPh IPULATF1) AS A SitdIJL ENTITY. (DAN 137) SEE ALSO:
PROGRPP: SEGELNT.

UNIT CONSISTENCY ANALYSIS PROGRAM
A C LPUTLR PRUGRAt! THAT ANALYZIS SOURCE CUL IU V- RIfY UNITS CONSISTEiCY IOR
LACH USAGE OF EACH PAPAMETP. (DAN 134)

UNIX
AN UPiNA8Nb SYsTIP I(H LNIVAC SY'2EPS L[VLLtl[I[l LY BILL [A-F-., PISCATAWAY,
N.J.

USER
THE INUIVI DLAL A'T Til N/lACH RE NIt TIPACE ,Ht I f ;J'I'LYINU THE SUFTWARE TO
TItL SOLUTION, of A PPLULI,, I.G. TEST t.P LRAILNS. (LRN2I) (2) ANY LNTITY
USING : ft fA(1 L s I ,I ! A1, U it A 'NG '? STt , 1h AL4I '1ION, T u 'NORPMAL USERS,
Ti Is I NCLUL' S AT '!AI T 7 P 1'k .t , GP TU, LSk , A.ND t. p;7 (;RS. (ANS I -x311

USIR-INTERACYIVE SYSTEM
A tLl'UTt SYSTEt,' 6 HCH IS LSI [-Y t.LANS (F AN I NTIPACTIVLE TERMIt,AL OPERATED
BY THE IS5F.

UTILITIES
CMF:PUTER PPUtPAfS (MPLOYEU VY (THER V/V/C 11AS T1 i PIOVIDE SPECIAL SERVICES.
THESE SERVICES INCLULL PRLIARING PROG4RAP" DC?. LISTINGS, (RLATING LOAD TAPLS,
AND PL(TTING OUTPUT RESULTS. (DAN 134) (2) TOOLS T HAT fACILITATE THE
PRODUCTI(N AND CONTROL 0i 51 kTARL SYSTLVS. THE SL IN(LUDE T(OOLS FOR LATA SLI
MANAGEMENT, PROGRAIv D[VELOPMEN, T, AND PROGRAM EXLCUTIOI,.. (DAN Lb7) (3) ANY
COMPONENT ThAT IS GE ERA TLD FOR THE PURPOSE OF SATISYING S(O. GENERAL
SUPPOPT FUNCTION REQUIRLD BY OTHER APPLICATIONS SOFTWARE MAY el CON4SIDLRLD i
UTILITY. 6E THIN. OF THIS CLASS OF COKPONENTS AS CONTAINING SOFTWARE LThAT
COES NOT FIT INTO ANY Of THE OTHER THREE CATEGORIES. ALTHOUGH COKNENTS CAN
FALL INTO TWO OF THE PRIMAPY CATEGORIES (E.G. SCIENTIFIC AND UTILITY), IT
WILL BE EASIER TO USE JUST THE MORI DESCRIPTIVE C'F THE CATLGURILS (E.G.,
VECTOR CROSS PRODUCT-SCIENTIFIC DATA UNPACKINC - UTILITY.) (SEL) SEE ALSO:
SUPPORT SOFTWARE.

UTILITY SOFTWARE
COMPUTER PROGRAMS WHICH PLRFORM, VARIOUS SERVICL FUNCTIONS, SUCH AS PUV,
PROGRA10, AND DATA FILLS, AND ACCESSING PLRIPHERAL EQUIPMENT (NASA)

VAL IDAT ION
THE PPOCESS OF DETER PINING WHETHER EXECUTING THE SYSTE (I.E., SOFTWARE,
HARDWARE, USER PROCEDURES, PERSONNEL) IN A USER ENVIRONMENT CAUSES ANY
OPERATIONAL DIFFICULTIES. THE PROCESS INCLUDES LNSURI NG THAT SPECIFIC
PROGRAM, FUNCTIONS MEET THeir REQUIREML1ETS AND SPECIFICATIONS. VALIDATION
ALSO INCLUDES THE PREVENTION, DETECTION, DIAGNOSIS, RECOVERY, AND CORRECTION
Of ERRORS. (2) VALIDATION IS MORE DIFFICULT THAN THE VE, IFICATION PROCESS
SINCE IT INVOLVES CUESTIONS OF THE COP'PLETENLSS OF THE SPECIFICATION ANL'
ENVIRON, ENT INFORMATION. THERE ARE BOTH ANUAL AND COfMPUTUR EASLJ VALIDATION
TECHNIQUES. (DAN 154) (3) THE PRusLESS OF ENSURING THAT SPECIFIC PROGRAM
FUNCTIONS MEET THEIR DETAILED DESIGN REQUIRLMLNT SPLCIFIC. TIONS. ALSO, SEE
PROGRAM VALIDATION, PROGkAM VALIDATION TOOLS, AND VALIDATION AND DEBUGGING

126

'00

TOOLS. (DAN LD7) SEL ALSO: LUMPUTLR PROGPA, VALIDATION

VALIDATION AND DEBUGGING TOOLS
TOOLS RELATED TO Tf!E PRODUCTIUN U CGkRLCT, SLVIlCLABLE PROGJAmS. VALIDAH UIN
INCLUDES THE PREVEfTION, ULTLCTION, IAGNOSIS, PLCUVLRY, AND CORRECTI(N 61
ERRORS. DEbUGGING INCLUDLS CORRECTING ERRORS Of bOTH A L(GICAL AND A
CLERICAL NATURE. (DAN L07)

VALIDATION CRITERIA
A GUIDE DEFINING WHAT WILL BE LSLD TO DLTLF1NINE COMPLETION (A A MILESTONL.
THIS INCLUDES SUCCESSFUL (A'ERATION OF A TEST TOOL, UR ACCEPTANCE OF A
DOCUMENT, OR APPROVAL BY THE REVIEW bOARD. (DAN LP7)

VALIDATION TOOLS
SEE VALIDATION ANL DEBUGGING TOOLS

VALUE OF DATA
THE NUMBER AND KIND OF NUMBER (E.G., INTEGER, ILOATING POINT, ASCII EfC,[l DE
CHARACTER, ETC.), STORED IN A LOCAL VARIALLL UP DATA AREA, PAREALTLR, CU tFFN
VARIABLE, SYSTEM-6IUE DATA ITEM, LTC. (SEL)

VECTOR
ONE DIMENSIONAL ARRAY

VECTOR OPERATION
A UNIQUE OPERATION THAT FOURTH GLNEPATION HARDWARE CAN PERFORM ON A SET OF
DATA THROUGH PARALLEL PROCESSING. IT ALLOWS MULTIPLE 'SCALAR OPLRATIONS' T(
BE PERFORMED SIMULTANEOUSLY.

VERACITY
VERACITY IS DEFINL AS THE ADEQUACY WITH WHICH A GIVEN ALGORITHM REPRESLNTS
THE REQUIREMENTS OF THE PHYSICAL WORLD. (DAN 781)

VERIFICATION
COMPUTER PROGRAM VERIFICATION IS THE ITERATIVE PROCESS OF DETERMINING
WHETHER OR NOT THE PRODUCT Of EACH STEP Of THE COMPUTER PROGRAM ACQUISITION
PROCESS FULFILLS ALL REQUIREMENTS LEVIED BY THE PREVIOUS STEP. THLSE STEPS
ARE SYSTEM SPECIFICATION VERIFICATION, REQUIREENTS VERIF!CATION,
SPECIFICATION VERIFICATION, AND CODE VERIFICATION. (SET) (2) THE PkOCESS OF
DETERMINING WHETHER THE RESULTS Of EXECUTING THE SOFTWARE PRODUCT IN A TEST
ENVIRONMENT AGREE WITH THE SPErIFICATIONS. VERIFICATION IS USUALLY ONLY
CONCERNED WITH THE SOFTWARE'S LOGICAL CORRECTNESS (I.E., SATISFYING THE
FUNCTIONAL REQUIREMENTS) AND MAY BE A MANUAL OR A COPdPUTER BASEL PROCESS
(I.E., TESTING SOFTWARE BY EXECUTING IT ON A COMPUTER). (DAtN 154) (3) THE
PROCESS OF ENSURING T14AT THE SYSTEM AND ITS STRUCTURE MEET THE FUNCTIONAL
REQUIREMENTS OF THE BASELINE SPECIFICATION DOCUMENT. (DAN LD7) ALSO SEE
SYSTEM VERIFICATION.

VERIFICATION CONDITION GENERATOR (VCG)
A SOFTWARE PACKAGE USUALLY, BUT NOT NECESSARILY, AN INTERIM STAGE AS PART OF
AN AUTOMATED PROOF OF CORRECTNESS PACKAGE THAT RECEIVES A PARSED PROGRAM/
ASSERTION AS INPUT, AND OUTPUTS A STRING OF THEOREMS THAT WILL BE INPUT TG
THE THEOREM PROVER.

127

I

VERIFICATION TOOLS
VERItICATIUN TOOLS ARL COMPUTERIZED AIDS THAT AUTOMATE PORTIONS OF THE
ANALYSIS AND TESTING ACTIVITIES. (LISTING OF TYPES AND FUNCTIONS DAN306 P42)

VERIFICATION/VALIDATION/CERTIFICATION
VERIFICATION/VALIDATION/CERTIFICATION (OF COMPUTER PROGRAMS). THE PROCESS OF
LETLRMINING THAT THE COMPUTER PROGRAM WAS DEVELOPED IN ACCORDANCE WITH THE
STATED SPECIFICATION AND SATISFACTORILY PERFORMS, IN THE MISSION
ENVIRONMENT, THE FUNCTION(S) [OR WHICH IT WAS DESIGNED. SEE COMPUTER PROGRAM
VERIFICATION, COMP)UTER PROGRAM VALIDATION, COMPUTER PROGRAM CERTIFICATION.
(DAN 134)

VERSION MODIFICATION LEVEL
AN INDICATICN OF THE VERSION AND MOVIFICATION LEVEL OF A UNIT OF SOURCE
CODE. (DAN 137)

VIABILITY
VIABILITY IS DEHINE[AS THE ADEQUACY WITH kPICH A GIVEN ALGORITHM MEETS
TIMING CONSTRAINTS. (DAN 781)

VIRTUAL MACHINE MONITOR
THE PROGRAM WHICH MEDIATES BETWEEN THE VIRTUAL MACHINE AND THE ACTUAL
RESOURCES OF THE SYSTEM. (HOST MACHINE)

VIRTUAL MACHINE(S)
A HARDWARE-SOFTWARE DUPLICATE OF A REAL EXISTING COMPUTER SYSTEM IN WHICH A
STATISTICALLY DOMINANT SUBSET OF THE VIRTUAL PROCESSOR'S INSTRUCTIONS
EXECUTE DIRECTLY ON THE HOST (OR REAL) PROCESSOR IN NATIVE MODE. (2) A TEST
TOOL WHICH ALLOWS MULTIPLE SOFTWARE SYSTEMS TO EXECUTE ON ONE PHYSICAL
MACHINE, BUT LACH SYSTEM THINKS THAT IT HAS SOLE ACCESS AND CONTROL OF A
SINGLE DEDICATED PHYSICAL MACHINE. (DAN 286) (3) THE FUNCTIONAL EQUIVALENT
OF A REAL MACHINE. (ANSI-X3HI) SEE ALSO: ABSTRACT MACHINE.

VIRTUAL MEMORY
COMPUTER STORAGE THAT APFEARS EXTERNALLY TO HAVE UNLIMITED CAPACITY.

WALK-THROUGH
FORMAL MEETING SESSIONS FOR THE REVIEW OF SOURCE CODE AND DESIGN BY THE
VARIOUS MEMBERS OF THE PROJECT, fOR TECHNICAL RAIHER THAN MANAGEMENT
PURPOSES. THE PURPOSE IS FOR ERROR DETECTION AND NOT CORRECTION. (SEE) (2) A
FORMAL, MULTIDISCIPLINARY PAPER DESIGN REVIEW OF A COMPUTER PROGRAM,
SPECIFICATION, STRUCTURE, PROGRA,, LOGIC, MODULES, CODE,ETC., OFTEN USING
HYPOTHETICAL INPUTS. (NASA)

WEIBULL DISTRIBUTION
INDEXING TERM. REFERS TO THE MATHEMATICAL METHODOLOGY WHICH IS USED TO
CONSTRUCT, OR WHICH IS THE FORM ASSUMED BY, A PARTICULAR MODEL.

WELLMADE
A SOFTWARE DESIGN METHODOLOGY WHICH SEEKS TO DERIVE A PROVABLY CORRECT
PROGRAM FROM THE FUNCTIONAL SPECIFICATIONS. (DAN 254)

WHILE

PROGRAM CONTROL CONSTRUCT WHERE CONTROL STAYS AS LONG AS THE CONTROL

128

.0

VARIABLES SATISFY THE SPECIFIED CONDITION... THE WHILE CONSTRUCTIOON IS
CONSIDERED AS A "GOTO" REPLACEMENT. PROGRAMMING LANGUAGE BLISS IS A
"GOTO-LESS" LANGUAGE BUT CONTAINS A "WHILE-DO" CONSTRUCT. (SET)

WORD
A SEQUENCE OF A PARTICULAR LENGTH OF O'S AND 1'S WHICH IS INTERPRETED BY A
COMPUTER AS AN INSTRUCTION OR ELEMENT OF DATA. (NASA)

WORK BREAKDOWN STRUCTURE
A MANAGEMENT TOOL USED ON PROJECTS AND PROPOSALS TO IDENTIFY THE INDIVIDUAL
COST CENTERS FOR ASSIGNING COSTS AND MAINTAINING CONTROL ON ALL INDIVIDUAL
ITEMS OF WORK ON A PROJECT. (DAN 1201) (2) AN ENUMERATION OF ALL WORK
ACTIVITIES IN HIERARCHIC REFINEMENTS OF DETAIL THAT DEFINES WORK TO BE DONE
INTO SHORT, MANAGEABLE TASKS WITH QUANTIFIABLE INPUTS, OUTPUTS, SCHEDULES,
AND ASSIGNED RESPONSIBILITIES. IT IS USED FOR PROJECT BUDGETING OF TIME AND
RESOURCES DOWN TO THE INDIVIDUAL TASK LEVEL, AND AS A BASIS FUR PROGRESS
REPORTING RELATIVE TO MEANINGFUL MANAGEMENT MILESTONES. (DAN 1153)

WORKAROUND
THE METHOD USED TO COUNTERACT THE EFFECTS OF AN ERROR IN A PROGRAM WHEN THE
CAUSE OF THE ERROR, AND CONSEQUENTLY THE LOCATION OF THE STATEMENTS
CONTAINING THE ERROR, IS NOT KNOWN. (SEL)

WORKING SETS
A PROGRAM'S WORKING SET IS A COLLECTION OF RECENTLY REFERENCED PAGES (OR
SEGMENTS) OF A PROGRAM'S VIRTUAL ADDRESS SPACE. BECAUSE IT IS SPECIFIED IN
THE PROGRAM'S VIRTUAL TIME, THE WORKING SET PROVIDES AN INTRINSIC
MEASUREMENT OF THE PROGRAM'S MEMORY DEMAND-- I.E. A MEASUREMENT THAT IS
UNPERTURBED BY ANY OTHER PROGRAM IN THE SYSTEM OR BY THE MEASUREMENT
PROCEDURE ITESELF.

ZIPF'S LAWS
A LINGUISTIC THEORY WHICH DESCRIBES THE STRUCTURE OF A WRITTEN OR SPOKEN
NATURAL LANGUAGE. IN PARTICULAR, THIS THEORY IS BEING EXTENDED TO
PROGRAMMING LANGUAGES. (DAN 297).

129

SECTION III

SOURCES

131

3.1 Bibliography of Sources

DAN 14 OGDIN, JERRY L., 'IMPROVING SOFTWARE RELIABILITY', DATAMATION,
JANUARY 1973, PP. 49-52.

DAN 21 CRAIG, G.R., HETRICK, W.L., LIPOW, M., THAYER, T.A., ET AL,
'SOFTWARE RELIABILITY STUDY', RADC-TR-74-250, OCTOBER 1974, 11OP. AVAIL:NTIS
(ORDER NUMBER AD-787-784)

DAN 31 SHOOMAN, MARTIN L., 'SOFTWARE RELIABILITY: MEASUREMENT AND
MODELS', PROCEEDINGS 1975 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM,
JAN. 1975, PP. 485-591.

DAN 109 ROSS, DOUGLAS T., GOODENOUGH, JOHN B., IRVINE,C.A., 'SOFTWARE
ENGINEERING: PROCESS, PRINCIPLES, AND GOALS', COMPUTER, MAY 1975, PP. 17-27.

DAN 132 BOEHM, B.W., BROWN, J.R., KASPER, H., LIPOW, M., MACLEOD,
G.J. MERRITT, M.J. 'CHARACTERISTICS OF SOFTWARE QUALITY', TRW-SS-73-09, 2P
DECEMBER 1973, 166P. AVAIL:TRWD

DAN 134 REIFER, D.J., 'INTERIM REPORT ON THE AIDS INVENTORY PROJECT',
REPORT SAMSO-TR-75-184, 16 JULY 1975, 70P. AVAIL: NTIS

DAN 136 TRIMBLE, JOHN T. 'STRUCTURED PROGRAMMING SERIES VOLUME IV,
DATA STRUCTURING STUDY', 21 APRIL 1975, RADC-TR-74-300, 46P. AVAIL:NTIS

DAN 137 LUPPINO, F.M. ET.AL., 'STRUCTURED PROGRAMMING SERIES, VOLUME
V, PROGRAMMING SUPPORT LIBRARY (PSL) FUNCTIONAL REQUIREMENTS', 25 JULY 1974,
RADC -TR-74-300, 55P. AVAIL:NTIS (ORDER NUMBER AD/A-003 339)

DAN 140 BARRY, BARBARA S., 'STRUCTURED PROGRAMMING SERIES, VOLUME X,
CHIEF PROGRAMMER TEAM OPERATIONS DESCRIPTION', 22 JANUARY 1975,
RADC-TR-74-300, 51P. AVAIL:NTIS (ORDER NUMBER AD-AO08 861)

DAN 141 SMITH, RONALD L., 'STRUCTURED PROGRAMMING SERIES, VOLUME IX,
MANAGEMENT DATA COLLECTION AND REPORTING' 24 OCTOBER 1974, RADC-TR-74-300,
128P. AVAIL:NTIS (ORDER NUMBER AD-AO08-640)

DAN 142 KESSLER, MARVIN M., KISTER, WILLIAM E., 'STRUCTURED
PROGRAMMING SERIES VOLUME XIV, SOFTWARE TOOL IMPACT', 22 MAY 197S,
RADC-TR-74-300, 29P. AVAIL:NTIS

DAN 154 SMITH, RONALD L., 'STRUCTURED PROGRAMMING SERIES VOLUME XV,
VALIDATION AND VERIFICATION STUDY, VAv 1975, RADC-TR-74-300, 82P. AVAIL:NTIS

133

IJ ; t " " 4

DAN 158 MANLEY, JOHN JH., 'EMBEDDED COMPUTER SYSTEM SOFTWARE
RELIABILITY', DEFENSE MANAGEMENT JOURNAL, VOL. 11, NO 4, OCTOBER 1975, PP.
13-17.

DAN 172 CLAPP, J.A., 'SOFTWARE ENGINEERING: PROBLEMS AND FUTURE
DEVELOPMENTS', NOVEMBER 1974, MTR-2791, ESD-TR-74-195

DAN 209 MCCABE, THOMAS J., 'A COMPLEXITY MEASURE', IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 4, DEC. 1976, PP. 308-320.

DAN 210 MORANDA, PAUL B., 'QUANTITATIVE METHODS FOR SOFTWARE
RELIABILITY MEASUREMENTS', TECNICAL REPORT AFOSR-TR-77-0046, DECEMBER 1976,
191P. AVAIL:NTIS (ORDER NUMBER ADA035585)

DAN 222 JOINT TECHNICAL COORDINATING GROUP ON ELECTRONICS EQUIPMENT
RELIABILITY, 'SUMMARY REPORT OF THE JOINT LOGISTICS COMMANDERS ELECTRONICS
SYSTEMS RELIABILITY WORKSHOP', AUGUST 1975, 37P. AVAIL:NTIS (ORDER NUMBER
AD-AO14 568)

DAN 223 FIFE, DENNIS W., 'COMPUTER SOFTWARE MANAGEMENT: A PRIMER FOR
PROJECT MANAGEMENT AND QUALITY CONTROL', NBS SPECIAL PUBLICATIONS; 500-11,JULY
1977, 58P. AVAIL:GPO

DAN 225 AEROSPACE CORPORATION, 'FAULT-TOLERANT SOFTWARE FOR AIRCRAFT
CONTROL SYSTEMS', TECHNICAL REPORT NO. ATR-78(7640)-I FEB 1978, 74P.
AVAIL:NTIS

DAN 226 HECHT, H., ET.AL, 'RELIABILITY MEASUREMENT DURING SOFTWARE
DEVELOPMENT', NASA CR-145205, SEPTEMBER 1977, 96P. AVAIL:NTIS

DAN 227 MYERS, WARE, 'THE NEED FOR SOFTWARE ENGINEERING', COMPUTER,
FEBRUARY 1978, PP. 12-26.

DAN 230 THAYER, R.H., AND LEHMAN, J.H., 'SOFTWARE ENGINEERING PROJECT
MANAGEMENT: A SURVEY CONCERNING U.S. AEROSPACE INDUSTRY MANAGEMENT OF SOFTWARE
DEVELOPMENT PROJECTS', REPORT NO. SM-ALC/ADC-TR-77-02, 1977, 19P. (SUMMARY
APPEARS IN PROCEEDINGS OF AIAA CONFERENCE 'COMPUTERS IN AEROSPACE', NOVEMBER
1977)

DAN 231 FITZSIMMONS, A., AND LOVE, T., 'A REVIEW AND EVALUATION OF
SOFTWARE SCIENCE', ACM COMPUTING SURVEYS, MARCH 1978,PP. 3-18.

DAN 232 SHOOMAN, M.L., AND RUSTON H., 'SOFTWARE MODELING STUDIES
SUMMARY OF TECHNICAL PROGRESS', RADC-TR-78-4, VOLUME I, JANUARY 1978, 42P.
AVAIL:NTIS

DAN 233 BROWN, J.R. AND NELSON, E.C., 'FUNCTIONAL PROGRAMMING',
TECHNICAL REPORT, RADC-TR-78-24, FEB 1978, 101P. AVAIL:NTIS

DAN 234 BERNING, PAUL T., ANDERSON, ERIC R., AND BELZ, FRANK C.,
AUTOMATED COMPILER TEST CASE GENERATION, TECHNICAL REPORT, RADC-TR-78-30, FEB.
1978, 103P. AVAIL:NTIS

134

DAN 235 SUKERT, ALAN N., 'A FOUR-PROJECT EMPIRICAL STUDY OF SOFTWARE
ERROR PREDICTION MODELS', DRAFI 0! PAPER, 1978, 24P.

DAN 236 RANDALL, B., LEE, P.A., TR L!rAVEN, P.C., 'RELIABILITY ISSUES
IN COMPUTING SYSTEM DESIGN', ACM COMPUTING SURVEYS, VOL. 10, NO 2, JUNE 1978,
PP. 123-165.

DAN 237 ZELKOWITZ, MARVIN G., 'PERSPECTIVES ON SOFfWARE ENGINEERING',
ACM COMPUTING SURVEYS, VOL. 10, NO.2, JUNE 1978, PP. 197-216.

DAN 238 SCHICK, GEORGE J. AND WOLVERTON, RAY W., 'AN ANALYSIS Oi
COMPETING SOFTWARE RELIABILITY MODELS', IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. SE-4, NO.2, MAR. 1978, PP. 104-120.

DAN 239 LLOYD, D.K., AND LIPOW, M., RELIABILITY MANAGEMENT, METHODS,
AND MATHEMATICS, PUBLISHED BY THE AUTHORS, REDONDO BEACH, CA, 1977, 589P.

DAN 242 RIDDLE, WM. E., WILEDON, JACK C., SAYLOR, JOHN H., SEGAL,
ALAN R., AND STAVELY, ALLAN M., 'BEHAVIOR MODELING DURING SOFTWARE DESIGN',
PROCEEDINGS OF 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP.
13-22. AVAIL:IEES

DAN 243 KIEBURTZ, R.B., BARABASH, W., HILL, C.R., 'A TYPE-CHECKING
PROGRAM LINKAGE SYSTEM FOR PASCAL', PROCEEDING OF 3RD INT'L CONFERENCE ON
SOFTWARE ENGINEERING, MAY 1978, PP. 23-28. AVAIL:IEES

DAN 244 HAMILTON, PATRICIA A., MUSA, JOHN D., 'MEASURING RELIABILITY
OF COMPUTATION CENTER SOFTWARE', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE
ENGINEERING, MAY 1978, PP. 29-36. AVAIL:IEES

DAN 245 LITTLEWOOD, B., 'HOW TO MEASURE SOFTWARE RELIABILITY AND HOW
NOT TO...', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY
1978, PP. 37-45. AVAIL:IEES

DAN 246 MIYAMOTO, ISAO, 'TOWARD AN EFFECTIVE SOFTWARE RELIABILITY
EVALUATION', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY
1978, PP. 46-55. AVAIL:IEES

DAN 250 JACKSON, M.A., 'INFORMATION SYSTEMS: MODELING,SEQUENCING AND
TRANSFORMATIONS', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING,
MAY 1978, PP. 72-81. AVAIL:IEES

DAN 251 FISHER, DAVID A., 'THE INTERACTION BETWEEN THE PRELIMINARY
DESIGNS AND THE TECHNICAL REQUIREMENTS FOR THE DOD COMMON HIGH ORDER LANGUAGE,
PROCEEDINGS, 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP.
82-83. AVAIL:IEES

DAN 253 PEDERSON, JAN T., BUCKLE, JOHN K., 'KONGSBERG'S ROAD TO AN
INDUSTRIAL SOFTWARE METHODOLOGY', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE
ENGINEERING, MAY 1978, PP. 85-93. AVAIL:IEES

DAN 254 BOYD, DOiNALD L., PIZZARELLO, ANTONIO, 'INTRODUCTION TO THE
WELLMADE DESIGN METHODOLOGY', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE

135

*1 .

IJ

ENGINEERING, MAY 1978, PP. 94-100. AVAIL:IEES

DAN 255 STEPHENS, SHARON A., TRIPP, LEONARD L., 'REQUIREMENTS
EXPRESSION AND VERIFICATION AID', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE
ENGINEERING, MAY 1978, PP. 101-108. AVAIL:IEES

DAN 256 WILLIS, R.R., 'DAS - AN AUTOMATED SYSTEM TO SUPPORT DESIGN
ANALYSIS', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978,
PP. 109-115. AVAIL:IEES

DAN 258 DNIESTROWSKI, A., GUILLAUME, J.M., AND MORTIER, R., 'SOFTWARE
ENGINEERING IN AVIONICS APPLICATIONS', PROCEEDINGS 3RD INT'L CONFERENCE ON
SOFTWARE ENGINEERING, MAY 1978, PP. 124-131. AVAIL:IEES

DAN 260 BROWN, JOHN R. AND FISCHER, KURT, F., 'A GRAPH THEORETIC
APPROACH TO THE VERIFICATION OF PROGRAM STRUCTURES', PROCEEDINGS, 3RD INT'L
CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP. 136-141. AVAIL:IEES

DAN 261 BROWNE, J.C. AND JOHNSON, DAVID B., 'FAST: A SECOND
GENERATION PROGRAM ANALYSIS SYSTEM', PROCEEDINGS OF THE 3RD INT'L CONFERENCE
ON SOFTWARE ENGINEERING, MAY 1978, PP. 142-148. AVAIL:IEES

DAN 262 MCCLURE, CARMA L., ' MODEL FOR PROGRAM COMPLEXITY ANALYSIS
PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP.
149-157. AVAIL:IEES

DAN 263 DERSHOWITZ, NACHUM AND MANNA, ZOHAR, 'INFERENCE RULES FOR
PROGRAM ANNOTATION', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING,
MAY 1978, PP. 158-167. AVAIL:IEES

DAN 264 AZEMA, P., AYACHE, J.M., BERTHOMIEU, B., 'DESIGN AND
VERIFICATION OF COMMUNICATION PROCEDURES: A BOTTOM-UP APPROACH PROCEEDINGS 3RD
INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP. 168-174. AVAIL:IEES

DAN 265 MANNA, ZOHAR AND WALDINGER, RICHARD, 'THE SYNTHESIS OF
STRUCTURE-CHANGING PROGRAMS', PROCLEDINGS 3RD INT'L CONFERENCE ON SOFTWARE
ENGINEERING, MAY 1978, PP. 175-187. AVAIL:IEES

DAN 269 BOI, M.M.L. AND MICHEL, P., 'DESIGN AND PRINCIPLES OF A FAULT
TOLERANT SYSTEM', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARF ENGINEERING,
MAY 1978, PP. 207-214. AVAIL:IEES

DAN 270 CHUNG, PAUL AND GAIMAN, BARRY, 'USE OF STATE DIAGRAMS TO
ENGINEER COMMUNICATIONS SOFTWARE', PROCEEDINGS 3RD INT'L CONFERENCE ON
SOFTWARE ENGINEERING, MAY 1978, PP. 215-221. AVAIL:IEES

DAN 271 SCOTT, LEIGHTON R., 'AN ENGINEERING METHODOLOGY FOR
PRESENTING SOFTWARE FUNCTIONAL ARCHITECTURE', PROCEEDINGS 3RD INT'L CONFERENCE
ON SOFTWARE ENGINEERING, MAY 1978, PP. 222-229. AVAIL:lEES

DAN 272 CAMPOS, IVAN M., AND ESTRIN, GERALD, 'CONCURRENT SOFTWARE
SYSTEM DESIGN SUPPORTED BY SARA AT THE AGE OF ONE', PROCEEDINGS, 3RD INT'L
CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP. 230-242. AVAIL:IEES

136

Li .A

I' °

DAN 273 WEGNER, PETER, 'RESEARCH DIRECTIONS IN SOFTWARE TECHNOLOGY',
PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING', MAY 1978, PP.
243-259. AVAIL:lEES

DAN 275 PARNAS, DAVID L., 'DESIGNING SOFTWARE FOR EASE OF EXTENSION
AND CONTRACTION', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING,
MAY 1978, PP. 264-277. AVAIL:lEES

DAN 277 COOK, DOUGLAS, 'MEASURING MEMORY PROTECTION', PROCEEDINGS 3RD
INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP. 281-287. AVAIL:IEES

DAN 278 ALMES, GUY, AND ROBERTSON, GEORGE, 'AN EXTENSIBLE FILE SYSTEM
FOR HYDRA', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY
1978, PP. 288-294. AVAIL:IEES

DAN 279 GOULLON, HANNES; ISLE, RAINER; AND LOHR, KLAUS-PETER,'DYNAMIC
RESTRUCTURING IN AN EXPERIMENTAL OPERATING SYSTEM', PROCEEDINGS, 3RD INT'L
CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP. 230-242. AVAIL:IEES

DAN 281 PERSCH, GUIDO AND WINTERSTEIN, GEORGE, 'SYMBOLIC
INTERPRETATION AND TRACING OF PASCAL-PROGRAMS', PROCEEDINGS 3RD INT'L
CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP. 312-319. AVAIL:IEES

DAN 282 PANZL, DAVID J., 'AUTOMATIC REVISION OF FORMAL TEST
PROCEDURES', PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY
1978, PP. 320-326. AVAIL:lEES

DAN 283 STERN, MAX, 'SOME EXPERIENCE IN BUILDING PORTABLE SOFTWARE',
PROCEEDINGS 3RD INT'L CONFERENCE ON SOFTWARE ENGINEERING, MAY 1978, PP.
327-332. AVAIL:IEES

DAN 284 THALMANN, DANIEL, EVOLUTION IN THE DESIGN OF ABSTRACT
MACHINES FOR SOFTWARE PORTABILITY', PROCEEDINGS 3RD INT'L CONFERENCE ON
SOFTWARE ENGINEERING, MAY 1978, PP. 333-340. AVAIL:IEES

DAN 286 MYERS, GLENFORD J., 'SOFTWARE RELIABILITY PRINCIPLES AND
PRACTICES', WILEY INTERSCIENCE PUBLICATIONS, 1976, 360P.

DAN 288 SCHUSTER, S.A. AND REGHBATI, E., 'AN APPROACH TO THE
ENGINEERING OF DATA PROCESSING PROGRAMS',PROCEEDINGS OF COMPSAC 77, NOV. 1977,
PP. 540-546. AVAIL:lEES

DAN 289 LOCKS, MITCHELL 0., 'MONTE CARLO BAYESIAN SYSTEM RELIABILITY
AND MTBF - CONFIDENCE ASSESSMENT, 11', VOL. 1, 'THEORY', VOL. 2, 'SPARCS-2
USER'S MANUAL', TECHNICAL REPORT, MAR. 1978, 103P.

DAN 290 ISRAD,'U.S. ARMY INTEGRATED SOFTWARE RESEARCH AND DEVELOPMENT
PROGRAM' VOL. 1 - EXECUTIVE SUMMARY, APRIL 1977, 20 P.

DAN 292 RYE, P., BAMBERGER, F., OSTANEK, W., BRODEUR, N., GOODE,J.
'SOFTWARE SYSTEMS DEVELOPMENT: A CSDL PROJECT HISTORY', JUNE 1977, 91P. FINAL
TECHNICAL REPORT, RADC-TR-77-213. AVAIL:IEES

137

'1

I
DAN 295 FIRES, M.J., 'SOFTWARE ERROR DATA ACQUISITION', FINAL

TECHNICAL REPORT, RADC-TR-77-130, APRIL 1977. AVAIL:NTIS

DAN 296 GOEL, AMRIT L., AND OKUMOTO, K., 'BAYESIAN SOFTWARE
PREDICTION MODELS, 4 VOLS., FINAL TECHNICAL REPORT RADC-TR-78-155, VOLS 1-4,
JULY 1978. AVAIL:NTIS

DAN 297 LAEMMEL, A.L., AND SHOOMAN, M., 'SOFTWARE MODELING STUDIES
STATISTICAL (NATURAL) LANGUAGE THEORY AND COMPUTER PROGRAM COMPLEXITY', FINAL
TECHNICAL REPORT, RADC-TR-78-4, VOL. II, APR. 1977, 48P. AVAIL:NTIS

DAN 298 GOEL, AMRIT L., 'SUMMARY OF TECHNICAL PROGRESS ON BAYESIAN
SOFTWARE PREDICTION MODELS', INTERIM REPORT, RADC-TR-77-112, MARCH 1977, 42P. V
AVAIL:NTIS

DAN 299 SHOOMAN, M.L. AND RUSTON, H., SUMMARY OF TECHNICAL PROGRESS,
SOFTWARE MODELING STUDIES', INTERIM REPORT, RADC-TR- 77-88, MARCH 1977, 42P.
AVAIL:NTIS

DAN 300 PRENTISS, NELSON H., JR., 'VIKING SOFTWARE DATA', TECHNICAL
REPORT, RADC-TR-77-168, 1977, 293P. AVAIL:NTIS

DAN 301 UHRIG, J.L., 'LIFE-CYCLE', CYCLE EVALUATION OF SYSTEM
PARTITIONING', PROCLEDINGS, COMPSAC 77, 1977, PP. 2-8. AVAIL:IEES

DAN 303 DEWOLF, BARTON J., 'REQUIREMENTS SPECIFICATION AND
PRELIMINARY DESIGN FOR REAL-TIME SYSTEMS', PROCEEDINGS, COMPSAC 77, 1977, PP.
17-23. AVAIL:IEES

DAN 306 FUJII, MARILYN S., 'INDEPENDENT VERIFICATION OF HIGHLY
RELIABLE PROGRAMS', PROCEEDINGS, COMPSAC 77, 1977, PP. 38-44. AVAIL:IEES

DAN 308 CHOW, TSUN S., 'TESTING SOFTWARE DESIGN MODELED BY FINITE
STATE MACHINES', PROCEEDINGS, COMPSAC 77, 1977, PP. 58-64. AVAIL:IEES

DAN 311 CHAN, ALEX M., LUI, JAMES C., RODE, ELVA E., SLEKYS, ARUNAS
G., 'TASC: A FAULT-TOLERANT MINICOMPUTER-BASED SYSTEM FOR CENTRALIZED
MAINTENANCE OF ELECTRONIC SWITCHERS', PROCEEDINGS, COMPSAC 77, 1977, PP.
120-126. AVAIL:lEES

DAN 313 ZOLNOWSKI, JEAN M. AND SIMMONS, DICK B., 'A COMPLEXITY
MEASURE APPLIED TO FORTRAN', PROCEEDINGS, COMPSAC 77, 1977, PP. 133-141.
AVAIL:lEES

DAN 314 CHEN, EDWARD T., 'PROGRAM COMPLEXITY AND PROGRAMMER
PRODUCTIVITY', PROCEEDINGS, COMPSAC 77, 1977, PP. 142-148. AVAIL:IEES

DAN 315 AVIZIENIS, ALGIRDAS AND CHEN, LIMING, '(N THE IMPLEMENTATION
OF N-VERSION PROGRAMMING FOR SOFTWARE FAULT-TOLERANCE DURING PROGRAM
EXECUTION', PROCEEDINGS, COMPSAC 77, 1977, PP. 149-155. AVAIL:IEES

DAN 318 IRVABUCHI, EISUKE; SOGA, KENTARO; AND KAWAI, YOICHI;
'STRUCTURED DESIGN OF ELECTRONIC SWITCHING SYSTEMS, PROCEEDINGS, COMPSAC 77,

138
0h

1977, PP. 179-185. AVAIL:IEES 1
DAN 322 FERRENTINO, A.B., AND MILLS, H.D., 'STATE MACHINES AND THEIR

SEMANTICS IN SOFTWARE ENGINEERING', PROCEEDINGS, COMPSAC 77, 1977, PP.
242-251. AVAIL:IEES

DAN 323 KODRES, UNO R., 'ANALYSIS OF REAL-TIME SYSTEMS BY DATA
FLOWGRAPHS', PROCEEDINGS, COMPSAC 77, 1977, PP. 300-305. AVAIL:IEES

DAN 326 CAREY, ROBERT AND BENDICK, MARC, 'THE CONTROL OF A SOFTWARE
TEST PROCESS', PROCEEDINGS, COMPSAC 77, 1977, PP. 327-333. AVAIL:IEES

DAN 327 STRAETER, TERRY A., FOUDRIAT, EDWIN C., AND WILL, RALPH W
'RESEARCH FLIGHT SOFTWARE ENGINEERING AND MUST, AN INTEGRATED SYSTEM OF
SUPPORT TOOLS', PROCEEDINGS, COMPSAC 77, 1977, PP.392-396. AVAIL:IEES

DAN 333 CHESTER, DANIEL L., AND YEH, RAYMOND T., 'SOFTWARE
DEVELOPMENT BY EVALUATION OF SYSTEM DESIGNS', PROCEEDINGS, COMPSAC 77, 1977,
PP. 435-441. AVAIL:IEES

DAN 335 SHARPLEY, W.K., JR., 'SOFTWARE MAINTENANCE PLANNING FOR
EMBEDDED COMPUTER SYSTEMS', PROCEEDINGS, COMPSAC 77, 1977, PP. 520-526.
AVAIL:lEES

DAN 338 ELSHOFF, JAMES L., 'ON OPTIMAL MODULE SIZE WITH RESPECT TO
COMPILATION COST', PROCEEDINGS, COMPSAC 77, 1977, PP. 547-553. AVAIL:IEES

DAN 346 DES JARDINS, RICHARD, 'EVOLUTIONARY DISTRIBUTED SYSTEMS
DESIGN', PROCEEDINGS, COMPSAC 77, 1977, PP. 765-771. AVAIL:IEES

DAN 347 BEDARD, C.J., MELLOR, F., AND OLDER, W.J., 'A
MESSAGE-SWITCHED OPERATING SYSTEM FOR A MULTIPROCESSOR', PROCEEDINGS, COMPSAC
77, 1977, PP. 772-777. AVAIL:IEES

DAN 355 TURN R., DAVIS, M.R., REINSTEDT, R.N., 'A MANAGEMENT APPROACH
TO THE DEVELOPMENT OF COMPUTER-BASED SYSTEMS', A COLLECTION OF TECHNICAL
PAPERS, COMPUTERS IN AEROSPACE CONFERENCE, NOV. 1977, PP. 11-17. AVAIL:AIAA

DAN 356 SYLVESTER, DR. RICHARD J., 'ELEMENTS OF THE COMPUTER PROGRAM
DEVELOPMENT PLAN'. A COLLECTION OF TECHNICAL PAPERS COMPUTERS IN AEROSPACE
CONFERENCE, NOV.1977, PP. 18-22. AVAIL:AIAA

DAN 360 OSTERWEIL, LEON J., 'A METHODOLOGY FOR TESTING COMPUTER
PROGRAMS', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE
CONFERENCE, NOV. 1977, PP. 52-62. AVAIL:AIAA

DAN 361 GODOY, S.G., AND ENGELS, G.J.,'SOFTWARE SNEAK ANALYSIS', A
COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE CONFERENCE, NOV. 1977,
PP. 63-67. AVAIL:AIAA

DAN 366 BATE, ROGER R., 'SOFTWARE DESIGN PROCEDURES', A COLLECTION OF
TECHNICAL PAPERS, COMPUTERS IN AEROSPACE CONFERENCE, NOV. 1977, PP. 102-107.
AVAIL:AIAA

139

-, ,

DAN 370 WHEATLEY, RICHARD, 'A SIMULATION TECHNIQUE IN MICROPROGRAM
VALIDATION', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE
CONFERENCE, NOV. 1977, PP. 125-129. AVAIL:AIAA

DAN 381 TERNANDEZ, MANUEL, 'A REVIEW OF DOD AND NASA COMPUTER
STANDARDIZATION', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE
CONFERENCE, NOV. 1977, PP. 232-239. AVAIL:IEES

DAN 382 THOMPSON, C.H., 'OVERVIEW OF AIR FORCE LOGISTICS SOFTWARE
MANAGEMENT', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE
CONFERENCE, NOV. 1977, PP. 257-259. AVAIL:AIAA

DAN 384 JELINSKI, Z., 'DECREASING DESIGN ERRORS AND PROBLEMS WITH
SUPPORT SOFTWARE AS DELIVERABLES', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS
IN AEROSPACE CONFERENCE, NOV. 1977, PP. 268-275. AVAIL:AIAA

DAN 385 FOX, COL. LOREN J., 'E-3A SOFTWARE MAINTENANCE',A COLLECTION
OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE CONFERENCE, NOV. 1977, PP.
276-285. AVAIL:AIAA

DAN 388 MARTIN, DR. FRED H., 'HAL/S - THE AVIONICS PROGRAMVING SYSTEM
FOR SHUTTLE', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN PEROSPACE
CONFERENCE, NOV. 1977, PP. 308-31F. AVAIL:AIAA

DAN 389 BONNEAU, R.J. 'IMPROVED OPERATING SYSTEMS RELIABILITY THROUGH
LANGUAGE FEATURES', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE
CONFERENCE, NOV. 1977, PP. 319-324. AVAIL:AIAA

DAN 390 SMITH, Y.V. AND JELINSKI, Z., 'HOLDET HIGHER LANGUAGE
EVALUATION TOOL', A COLLLLT'ON OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE
CONFERENCE, NOV. 1977, PP. 325-32F. AVAIL:AIAA

DAN 393 C. CANNON, 'A VERIFICATION CASE STUDY', A COLLECTION OF
TECHNICAL PAPERS, COMPUTERS I' AEROSPACE CONFERENCE, NOV. 1977, PP. 349-353.
AVAIL:AIAA

DAN 402 SUKERT, ALAN N., 'A MULTI-PROJECT COMPARISON OF SOFTWARE
RELIABILITY MODELS', A COLLECTION OF TECHNICAL PAPERS, COMPUTERS IN AEROSPACE
CONFERENCE, NOV. 1977, PP. 413-421. AVAIL:AIAA

DAN 412 YAO, S.B. BERNSTEIN, PHILIP A., GOODMAN, NATHAN, SCHUSTER,
STEWART A., SHIPMAN, DAVID, AND SMITH, DIANE C.P.,'DATA-BASE SYSTEMS',
COMPUTER, SEPT. 1978, VOL. 11, NO. 9, PP. 46-60.

DAN 415 KING, JOHN LESLIE AND SCHREMS, EDWARD L. 'COST-BENEFIT
ANALYSIS IN INFORMATION SYSTEMS DEVELOPMENT AND OPERATION', ACM COMPUTING
SURVEYS, MAR. 1978, VOL. 10, NO. 1, PP. 19-34.

DAN 419 MANNA, ZOHAR AND WALDINGER, RICHARD, 'IS SOMETIME SOMETIMES
BETTER THAN ALWAYS?', PROCEEDINGS, 2ND INT'L CONFERENCE ON SOFTWARE
ENGINEERING, OCT. 1976, PP. 32-39. AVAIL:lEES

DAN 420 KARP, RICHARD ALAN AND LUCKHAM, DAVID C., 'VERIFICATION OF

140

p 0

FAIRNESS IN AN IMPLEMENTATION OF MONITORS', I'kOCE[LtIGS, k NI, INT'L C,)tF[PLNC[
ON SOFTWARE ENGINEERING, OCT. 1976, PP. 40-4t. AVAIL:IEIS

DAN 421 HOWARD, JOHN H., 'SIGNALING IN MONITOPS', PROCEL[)INGS, 2L
INT'L CONFERENCE ON SOFTWARE ENGINEERING, OCT. 1970, P. 47-c2. AVAIL:LS

DAN 422 SAXEfA, ASHOK R., ANd BRELT, THOMAS !i. , 'VERIFICATION (,fJ A
MONITOR SPECIFICATION', PROCLEI INGS, 2ND INT'L CLCNFEP[NCF ON SfTkARE
ENGINEERING, OCT. 1976, PP. 53-60. AVAIL:ILELS

DAN 423 BELL, T.E., AND TIIAYER, T.A., 'SOFT W;RL R[(. lIREMINTS: APE
THEY REALLY A PROBLEM?', PROCEEDINGS, 2ND INT'L C(INFIRENCE N S,,f TARE
ENGINEERING, OCT. 1976, PP. 61-63. AVAIL:ILIS

DAN 428 COOPER, LENNIS W., 'ADAPTIVF TESTING',)ROCI EINGS, NW INT-L
CONFERENCE ON SOFTWARE ENGINEERING, UCT. 1976, PP. 102-105. AVAIL:IlES

DAN 434 BROWNE, d.C., 'A CRITICAL (V._PVILW OF C(IMPUTER PEPFORMANCI
EVALUATION', PRCCEEDINGS, 2ND INT'L. (N[-PK;CF (FN SUf TWARE INGIN ERING, C(T.
1976, PP. 138-145. AVAIL:IEES

DAN 435 FERRARI, DOMENICO AND LAU EDWIN, ',,N IX[U-PIVENT N PP t(R''AV
RESTRUCTURING FOR PERFORMANCE ENHANCEMENT' I'ROCELIUING, ?N:D INI'L CJfi PEt;(1
ON SOFTWARE ENGINEERING, OCT. 1976, PP. 146-150. AVA1 : I!S

DAN 437 ZELKOWITZ, MARVIN V., 'AUTOMATIC PR.GRAV I ; . P,
EVALUATION', PROCEEDINGS, 2NO INT'L CONFERENCE ON S(F ,ARI 1GINL N,
1976, PP. 146-150. AVAIL:ILEES

DAN 448 FELDMAN, MICHAEL B., 'NEW LANGUAGES FRfM ()Lt): 7! - '1''
OF PROGRAMMING LANGUAGES BY EMBEDDING, WITP A CASE SiY', ;*C1[yiNU, ",N
INT'L CONFERENCE ON SOFTWARE ENGINEERING, OCT. 1976, IP. -31- 4?. '?V ILL S

DAN 451 GOUDA, MOHAMED G. , AND MANNl NG, EPI(C., '(N 7 4[Y0, 1 L IG
ANALYSIS AND DESIGN OF PROTOCOLS - A SVECIAL CLASS (f S(OIT 'ARE S'PLCILS',
PROCEEDINGS, 2ND INT'L CONFERENCE ON SOF TWARE FNG I NG, (TrT. 17 OP.
256-262. AVAIL:IEES

DAN 458 TURN, R., LAVIS, M.R., Alff- REINST!1T, P.T:. , 'A MIANAGLWIENT
APPROACH TO THE DEVELOPMENT OF COMPUTER-BASED SYSTfMS', JRICLEPINGs. 2ND INT'L
CONFERENCE ON SOFTWARE ENGINEERING, OCT. 1976, PP. 305-311. AVAIt:IFES

DAN 459 STEPHENSON, W.E., 'AN ANALYSIS OF THE RESOURCIS USED IN TVE
SAFEGUARD SYSTEM SOFTWARE DEVELOPMENT', PROCEEDINGS, 2ND INT'L CONFERENCE ON
SOFTWARE ENGINEERING, OCT. 1976, PP. 312-321. AVAILIE[S

DAN 470 DENNING, PETER J., 'SACRIFICING THE CALF OF FLEXIBILITY ON
THE ALTAR OF RELIABILITY', PROCEEDINGS, 2ND INT'L CONFERENCE ON SOFTWARE
ENGINEERING, OCT. 1976. PP. 384-386. AVAIL:IEES

DAN 476 YAU, S.S., CHEUNG, P.C., COCHRANE, D.C., 'AN APPROACH TO
ERROR-RESISTANT SOFTWARE DESIGN', PROCEEDINGS, 2ND INT'L CONFERENCL ON
SOFTWARE ENGINEERING, OCT. 1976, PP. 429-436. AVAIL:IELS

141

.! ..

DAN 503 DUVALL, LORRAINE M., 'SOFTWARE DATA REPOSITORY STUDY
TECHNICAL REPORT, RADC-TP-76-387, DEC. 1976, 153P. AVAIL:NTIS

DAN 509 THIBODEAU, ROBERT, 'THE STATE OF THE ART IN SOFTWARE ERROR
DATA COLLECTION AND ANALYSIS, TECHNICAL REPORT', 1978, 115P. AVAIL:DACS

DAN 529 CICU, A., AIOCCHI, M., POLILLO, R., SARDONI, A., 'ORGANIZING
TESTS DURING SOFTWARE EVOLUTIUN', PROCEEDINGS OF 1975 CONFERENCE ON RELIABLE
SOFTWARE, PP. 43-50. AVAIL:ILIS

DAN 532 LISKOV, L.H., AND ZILLES, S., 'SPECIFICATION TECHNIQUES FOR
DATA ABSTRACTIONS', PROCEEDINGS OF 1975 CONFERENCE ON RELIABLE SOFTWARE, PP.
72-87. AVAIL:IEES

CAN 535 BOEHM, b.W., MCCLEAN, R.K., AND URFRIG, D.B., 'SOME
EXPERIENCES WITH AUTOMATLC AIDS TO THE DESIGN OF LARGE-SCALE RELIABLE
SOFTWARE', PROCEEDINGS OF 1975 CONFERENCE ON RELIABLE SOFTWARE, PP. 105-113.
AVAIL:lEES

DAN 559 ENDRES, A., 'AN ANALYSIS OF ERRORS AND THEIR CAUSES IN SYSTEM
PROGRAMS' PROCEEDINGS OF 1975 CONFERENCE ON RELIABLE SOFTWARE, PP. 327-336.
AVAIL:IEES (ALSO IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 1975, VOL.
SE-i, NO. 2)

DAN 595 DENNING, PETER J., 'WORKING SETS TODAY', PROCEEDINGS, COmPSAC
78, 1978, PP. 71-77. AVAIL:lEES

DAN 609 HALLIN, T.C., AND HANSEN, R.C., 'TOWARD A BETTER METHOD OF
SOFTWARE TESTING', PROCEEDINGS, COMPSAC 78, 1978, PP. 153-157. AVAIL:IEES

DAN 612 CHOW, T.S., 'ANALYSIS OF SOFTWARE DESIGN MODELED BY MULTIPLE
FINITE STATE MACHINES', PROCEEDINGS OF COMPSAC 1978, PP. 169-174. AVAIL:IEES

DAN 616 DEMILLO, RICHARD A., AND DOBKIN, DAVID, 'RECENT PROGRESS IN
SECURE COMPUTATION', PROCEEDINGS OF COMPSAC 1978, PP. 209-214. AVAIL:IEES

DAN 617 DENNING, DOROTHY E., 'A METHOD FOR MAINTAINING ROUTING DATA
IN AUTOMATED RECORD KEEPING SYSTEMS', PROCEEDINGS OF COMPSAC 1978, PP.
215-219. AVAIL:IEES

DAN 668 YEE, JOHN G., AND SU, STEPHEN Y.H., 'A SCHEME FOR TOLERATING
FAULTY DATA IN REAL-TIME SYSTEMS', PROCEEDINGS OF COMPSAC 1978, PP. 663-667.
AVAIL:lEES

DAN 719 KODRES, UNO R., 'DISCRETE SYSTEMS AND FLOWCHARTS' IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOV. 1978, PP.
521-525.

DAN 720 RICH, CHARLES AND SHROBE, HOWARD, 'INITIAL REPORT ON A LISP
PROGRAMMER'S APPRENTICE', IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
SE-4, NO. 6, NOV. 1978, PP. 456-467.

DAN 724 MYERS, WARE, 'A STATISTICAL APPROACH TO SCHEDULING S6FTWARE

142

I --4

DEVELOPMENT', COMPUTER, VOL. 11, NO. 12, UEC. 1978, PP. 23-35.

DAN 737 FAIRLEY, RICHARD E., 'MODERN SOFTWARE DESIGN TECHNIQUES',
PROCEEDINGS OF THE SYMPOSIUM OF COMPUTER SOFTWARE ENGINEERING, MICROWAVE
RESEARCH INSTITUTE, SYMPOSIA SERIES VOL. XXIV, 1976, PP. 11-30. AVAIL:NYPP

DAN 748 AMSTER, S.J., DAVIS, E.J. bICKMAN, B.N., AND KUONI, J.P., 'AN
EXPERIMENT IN AUTOMATIC QUALITY EVALUATION OF SOFTWARE' PROCEEDINGS OF THE
SYMPOSIUM ON COMPUTER SOFTWARE ENGINEERING, MICROWAVE RESEARCH INSTITUTE,
SYMPOSIA SERIES VOL. XXIV, 1976, PP. 171-197. AVAIL:NYPP

DAN 749 CURRY, R.W., ' MEASURE TO SUPPORT CALIBRATION AND BALANCING
OF THE EFFECTIVENESS OF SOFTWARE ENGINEERING TOOLS AND TECHNIQUES',
PROCEEDINGS OF THE SYMPOSIUM ON COMPUTER SOFTWARE ENGINEERING, MICROWAVE
RESEARCH INSTITUTE, SYMPOSIA SERIES, VOL. XXIV, 1976, PP. 199-214. AVAIL:NYPP

DAN 753 YELOWITZ, L., 'SPECIFICATIONS, REFINEMENT, AND PROOF OF A
MICROPROCESSOR', PROCEEDINGS OF THE SYMPOSIUM ON COMPUTER SOFTWARE
EINGINEERING, MICROWAVE RESEARCH INSTITUTE, SYMPOSIA SERIES VOL. XXIV, 1976,
PP. 251-266. AVAIL:NYPP

DAN 758 RAMAMOORTHY, C.V., AND JAHANIAN, P., 'FORMALIZING THE
SPECIFICATION OF TARGET MACHINES FOR COMPILER ADAPTABILITY ENHANCEMENT',
PROCEEDINGS OF THE SYPOSIUM ON COMPUTER SOFTWARE ENGINEERING, MICROWAVE
RESEARCH INSTITUTE, SYMPOSIA SERIES, VOL. XXIV, 1976, PP. 353-366. AVAIL:NYPP

DAN 761 JOHNSON, J.N., AND SHAW, J.L., 'FAULT-TOLERANT SOFTWARE FOR A
DUAL PROCESSOR WITH MONITOR', PROCEEDINGS OF THE SYMPOSIUM ON COMPUTER
SOFTWARE ENGINEERING, MICROWAVE RESEARCH INSTITUTE, SYMPOSIA SERIES, VOL.
XXIV, 1976, 395-407. AVAIL:NYPP

DAN 766 MOHANTY, S.N., AND ADAMOWICZ, M. 'PROPOSED MEASURES FOR THE
EVALUATION OF SOFTWARE', PROCEEDINGS OF THE SYMPOSIUM ON COMPUTER SOFTWARE
ENGINEERING, MICROWAVE RESEARCH INSTITUTE, SYMPOSIA SERIES, VOL. XXIV, 1976,
PP. 485-497. AVAIL:NYPP

DAN 772 BOEHM, BARRY W., 'THE HIGH COST OF SOFTWARE', PAPER PRESENTED
AT USC SEMINAR: PRACTICAL STRATEGIES FOR DEVELOPING LARGE SOFTWARE SYSTEMS;
ADDISON WESLEY PUBL. CO., 1975, PP. 3-14.

DAN 773 SCHWARTZ, JULES I., 'CONSTRUCTION OF SOFTWARE: PROBLEMS AND
PRACTICALITIES', PAPER PRESENTED AT USC SEMINAR: PRACTICAL STRATEGIES FOR
DEVELOPING LARGE SOFTWARE SYSTEMS; ADDISON WESLEY PUBL. CO., 1975, PP. 15-53.

DAN 781 GILE, TOM, 'SOFTWARE METRICS', WINTHROP PUBLISHERS INC.,
1977, 282P.

DAN 786 CARTER, LT. EDWARD M., 'DATA ELEMENT DICTIONARY/DIRECTORY
SYSTEMS AND THE CONVERSION PROCESS, PROCEEDINGS OF THE ANNUAL COMPUTER
RELATED INFORMATION SYSTEMS SYMPOSIUM, 1978, 20P. AVAIL:AFAA

DAN 813 KRALY, T.M., NAUGHTON J.J., SMITH, R.L. AND TINANOFF, N.,

'PROGRAM DESIGN STUDY', STRUCTURED PROGRAMMING SERIES, VOL. VIII, TECHNICAL

143

REPORT RADC-TR-74-300, 1975, 66P. AVAIL:NTIS

DAN 837 DUNCAN, ARTHUR G., 'TEST GRAMMARS: A METHOD FOR GENERATING
PROGRAM TEST DATA', DIGEST FOR THE WORKSHOP ON SOFTWARE TESTING AND TEST
DOCUMENTATION, DEC. 1978, PP. 270-283. I

DAN 841 BURNS, JAMES E., 'STABILITY OF TEST DATA FRCM PROGRAM
MUTATION', DIGEST FOR THE WORKSHOP ON SOFTWARE TESTING AND TEST DOCUMENTATION,
DEC. 1978, PP. 324-334.

DAN 842 WHITE, LEE J. AND COHEN, EDWARD I., 'A DOMAIN STRATEGY FOR
COMPUTER PROGRAM TESTING', DIGEST FOR THE WORKSHOP ON SOFTWARE TESTING AND
TEST DOCUMENTATION, DEC. 1978, PP. 335-354.

DAN 843 LIPTON, RICHARD, AND SAYWARD, FREDERICK G., 'THE STATUS OF
RESEARCH ON PROGRAM MUTATION', LIGEST FOR THE WORKSHOP ON SOFTWARE TESTING AND
TEST DOCUMENTATION, DEC. 1978, PP. 355-373.

DAN 871 WOODWARD, M.R., HENNELL, M.A., AND HEDLEY, D., 'A MEASURE OF
CONTROL FLOW COMPLEXITY IN PROGRAM TEST', IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. SE-5, NO. 1, JAN. 1979, PP. 45-50.

DAN 872 CLARK, DOUGLAS W., 'MEASUREMENTS OF DYNAMIC LIST STRUCTURE
USE IN LISP', IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1,
JAN. 1979, PP. 51-59.

DAN 874 BURNS, G., AND COHEN, B., 'TOWARDS A CONTRACTUAL
METHODOLOGY', PAPER PRESENTED AT A WORKSHOP ON SOFTWARE TESTING AND TEST
DOCUMENTATION, 8P. (COPY OF PAPER RECEIVED FROM AUTHOR - AWAITING REST OF
CITATION)

DAN 1127 SHOLL, HOWARD A., AND BOOTH, TAYLOR A., 'SOFTWARE
PERFORMANCE MODELLING USING COMPUTATION STRUCTURES', PROCEEDINGS OF THE IST
NAT'L CONFERENCE ON SOFTWARE ENGINEERING, SEP. 1975, PP. E2-88. AVAIL:IEES

DAN 1153 TAUSWORTHE, ROBERT C., 'STANDARDIZED DEVELOPMENT OF COMPUTER
SOFTWARE, PART II STANDARDS', TECHNICAL REPORT, AUG. 1977, 547P. AVAIL:NTIS

DAN 1201 BRANNING, W.E., SCHAENZER, J.P., WILLSON, D.M., ERICKSON,
W.A.; 'MODERN PROGRAMMING PRACTICES STUDY REPORT', TECHNICAL REPORT,
RADC-TR-77-106, APR. 1977, 419P. AVAIL:NTIS

DAN 1237 FIFE, DENNIS W., 'SOFTWARE MANAGEMENT STANDARDS', SOFTWARE
PHENOMENOLOGY, WORKING PAPERS OF THE SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP,
AUG. 1977, PP. 63-80. AVAIL:DDC

(ABBOTT) DEFINITION TAKEN FROM LIST COMPILED BY RUSSELL J. ABBOTT,
DEPT. OF COMPUTER SCIENCE, CALIFORNIA STATE UNIVERSITY AT NORTHRIDGE, 18111
NORDHOFF STREET, NORTHRIDGE, CA 91330

(ANSI-X3) THIS MATERIAL IS REPRODUCED WITH PERMISSION FROM AMERICAN
NATIONAL STANDARDS COMMITTEE X3 TECHNICAL REPORT AMERICAN NATIONAL DICTIONARY
FOR INFORMATION PROCESSING, X3/TR-1-77, COPYRIGHT 1977 BY THE COMPUTER AND

144

IA

I

a

m

-..-------- 1

BUSINESS EQUIPMENT MANUFACTURERS ASSOCIATION (CBEMA), COPIES OF WHICH MAY BE
PURCHASED FROM THE AMERICAN NATIONAL STANDARDS INSTITUTE, 1430 BROADWAY, NEW
YORK, NY 10018

(ANSI-X3HI) AMERICAN NATIONAL STANDARDS INSTITUTE, STANDING COMMITTEE
ON OPERATING SYSTEM COMMAND LANGUAGES. DRAFT OF 21 MAY 1979. COMMITTEE CHAIRED
BY LOIS C. FRAMPTON, DIGITAL EQUIPMENT CORP., 146 MAIN ST., MAYNARD, MA 01754.
CURRENT VERSION MAINTAINED BY STEVEN MELLOR, U. OF CALIFORNIA, LAWRENCE
BERKELEY LABORATORY, BLDG 46A, BERKELEY, CA 94720

(NASA) LOCKHEED, GEORGIA, 'INDUSTRY PERSPECTIVE ON SIMULATION METHODS
AND RESEARCH FOR VALIDATION AND FAILURE EFFECTS. ANALYSIS OF ADVANCED DIGITAL
FLIGHT CONTROL/AVIONICS'. TECHNICAL REPORT, NASA CR-152234, FEB. 1979, 300+P.
LIMITED CIRCULATION - CONTROLLED DISTRIBUTION, NASA AMES RESEARCH CENTER,
MOFFITT FIELD, CA 94035

(AFR-800-14) DEPARTMENT OF THE AIR FORCE, WASHINGTON, DC ACQUISITION
AND SUPPORT PROCEDURES FOR COMPUTER RESOURCES IN SYSTEMS. AFR-800-14, VOL. 11,
26 SEPTEMBER 1975, 44P.

P730/D5 IEEE COMPUTER SOCIETY, TECHNICAL COMMITTEE, SUBCOMMITTEE ON
SOFTWARE ENGINEERING STANDARDS, 'TRIAL-USE STANDARD FOR SOFTWARE QUALITY
ASSURANCE PLANS', DEC. 1978, 13P.

(SET) SUBCOMMITTEE ON SOFTWARE ENGINEERING STANDARDS, TECHNICAL
COMMITTEE ON SOFTWARE ENGINEERING, IEEE COMPUTER SOCIETY. 'SOFTWARE
ENGINEERING TERMINOLOGY - DRAFT OF 23 MARCH 1978', ROBERT POSTON, H. HECHT,
EDITORS, 63P.

(SEL) SOFTWARE ENGINEERING LABORATORY, SOFTWARE ENGINEERING
LABORATORY GLOSSARY', NASA GODDARD SPACE FLIGHT CENTER, GREENBELT, MD 20770,
1978, 7P.

(LD4) WAGONER, W.L., 'THE FINAL REPORT ON A SOFTWARE RELIABILITY-
MEASUREMENT STUDY', REPORT NO. TOP-0074(4112)-I, 15 AUGUST 1973, 54P. LIMITED
DISTRIBUTION BY SAMSO/DYT, LOS ANGELES AIR FORCE STATION, LOS ANGELES, CA

(LD7) BRATMAN, HARVEY, CUDNEY, PAUL, AND JOHNSON, BRUCE; 'PROGRAM
PRODUCTION LIBRARY PROGRAMMER'S GUIDE', SYSTEM DEVELOPMENT CORP.
TM-5175-600-00, 10 AUGUST 1973, 56P. LIMITED DISTRIBUTION.

145

)~-&

-o t •

3.2 Ordering Information for Sources

CODE NAME AND ADDRESS

ACM ASSOCIATION FOR COMPUTING MACHINERY, INC., P.O. BOX 12105
CHURCH ST. STATION, NEW YORK, NY 10249

AFAA U.S. AIR FORCE ACADEMY, DEPT. OF ASTRONAUTICS
AND COMPUTER SCIENCE, DENVER, CO 80840

AIAA AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS,

1290 AVENUE OF THE AMERICAS, NEW YORK, NY 10010

BELW BELL LABORATORIES, WHIPPANY, NJ 07981

DACS DATA AND ANALYSIS CENTER FOR SOFTWARE, RADC/ISISI,
GRIFFISS AFB, ROME, NY 13441

DDC DEFENSE DOCUMENTATION CENTER, CAMERON STATION,
ALEXANDRIA, VA 22314

GPO U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON, DC 20402

IEES IEEE SERVICE CENTER, 445 HOES LANE, PISCATAWAY, NJ 08854

NTIS NATIONAL TECHNICAL INFORMATION SERVICE, 5285 PORT ROYAL RD.,
SPRINGFIELD, VA 22161

NYPP POLYTECHNIC PRESS OF THE POLYTECHNIC INSTITUTE OF
NY, BROOKLYN, NY 11201

TRWD TRW DEFENSE AND SPACE SYSTEMS GROUP,
REDONDO BEACH, CA 90278

147

Dm E
FILMED

